
o

on
CO BRL

J>*&&ff

KÜ7/3396

MEMORANDUM REPORT NO. 2053

FUNCTION APPROXIMATION ROUTINES FOR BRLESC - A SURVEY

by

John D. Wortman

August 1970

This document has been approved for public release and sale;
its distribution is unlimited.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER

BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND

Destroy this report when it is no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2053

AUGUST 1970

FUNCTION APPROXIMATION ROUTINES FOR BRLESC - A SURVEY

John D. Wortman

Applied Mathematics Division

This document has been approved for public release and sale;
its distribution is unlimited.

RDT&E Project No. 1T061102A1^B

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 2053

JLWortman/bj
Aberdeen Proving Ground, Md.
August 1970

FUNCTION APPROXIMATION ROUTINES FOR BRLESC - A SURVEY

ABSTRACT

This report is a survey of the function approximation routines

available for the BRLESC computer at Aberdeen Proving Ground as of

April 1969• It includes a description of each routine and some general

discussion.

TABLE OF CONTENTS

Page

ABSTRACT 3

I. INTRODUCTION 7

II. LIST OF ROUTINES 8

III. GENERAL DISCUSSION 15

A. Classification of Routines 15

B. Goodness of Approximation and Constraints 16

C. Bivariate Routines 17

D. Least Squares 21

E. Function Minimizing Routines 2k

F. Example 25

IV. DESCRIPTION OF ROUTINES 27

REFERENCES 1+0

APPENDIX - INSTRUCTIONS FOR USING APPROXIMATION
ROUTINES k3

DISTRIBUTION LIST 71

I. INTRODUCTION

The approximation of a function by another function is a frequent

computing problem. The primary purpose of this report is to list the
1*

readily available routines of this type for the BRLESC at Aberdeen

Proving Ground, as of April 1969- The majority of these routines, and

descriptions of them, are available through the Computer Support

Division, Systems Programming (Building 328, Room 213). Anyone who is

considering Curve fitting is strongly urged to examine the existing

programs before attempting to code his own.

In nearly all of these routines the original function is

represented by a table of N data points, (X.,y.), i=l,2,...,N, where y.

is the dependent variable (the function value we wish to approximate)

and X. is either a single dependent variable, x., or a vector of
1 T 1

variables, X. = (x... ,x. „.X.,T) . The immediate goal of most of the
' l il' i2' ' lN

routines is to find the "best" values for M parameters A = (a,,a ,...,aM)

in an equation F(X,A), the approximating function, which has been

chosen to represent the table of data.

In all these routines, the parameters, A, are chosen so as to

satisfy some prescribed constraints or to optimize some measure of the

goodness of the approximation. Some of the routines do both. The most

popular measure is the variance of residuals (the sum of squares of the

residuals) over the set of data being fitted. Fitting with this

measure is called the "method of least squares". Most numerical

analysis textbooks have some discussion of the principle of least

squares (e.g. Hildebrand). Most of the fitting programs for BRLESC

are based on this principle which states that the "best" approximation

is that which minimizes the sum of squares of the residuals.

The only approximation routines we consider are for interpolation

or curve fitting. We will not discuss the approximations used for any

of the standard functions (SIN, EXP, etc.), nor will we consider any

References are listed on pages kO and kl.

7

integration routines. Undoubtedly, some useful programs were overlooked,

other good BRLESC approximation routines may be completed in the near
2 ' 3 future, and FORTRAN versions of the most useful FORAST routines will

be made. (The MULTIPLE REGRESSION and NONLINEAR LEAST SQUARES are now

available in FORTRAN.)

In this report we first list the FORTRAN and FORAST function

approximation routines which were located and give a brief description

of them. We then have some general discussion of these programs.

Finally, we discuss each routine in a little more detail, give

references, point out some difficulties, and indicate some advantages

and disadvantages of some of the routines.

Instructions for using many of the routines are included in the

appendix.

II. LIST OF ROUTINES

A. Standard FORTRAN and (FORAST) Subroutines

Interpolation Subroutine

DVDINT (D.D.IN)

Least Squares Subroutines

MATINV, FNEQS (S.N.E.. F.N.E., etc.)
GENLSQ (G.L.SQ)
POLYLS (P.L.SQ)

Function Minimizing Subroutines

FNMIN (FN.MIN)
FDMIN (FD.MIN)

B. FORAST Fitting Programs

LEAST SQUARES PROGRAM
MULTIPLE REGRESSION (FORTRAN program available)
NONLINEAR LEAST SQUARES (FORTRAN program available)
PIECEWISE QUARTIC FIT
CUBIC SPLINE
LEAST SQUARES CUBIC SPLINE
POLYGONAL CURVE

8

C. Other FORTRAN Routines

CONSTRAINED NONLINEAR LEAST SQUARES (Program)
NONLINEAR LEAST SQUARES FOR CORRELATED DATA
NLPROG (Subroutine to minimize constrained functions)

The "standard" FORTRAN subroutines in the above list are available

on cards from Systems Programming, Computer Support Division. Each of

these subroutines is equivalent to some FORAST Subroutine on the FORAST

compiler tape. Three of the FORAST programs, LEAST SQUARES PROGRAM,

MULTIPLE REGRESSION, and NONLINEAR LEAST SQUARES, are also available

from Systems Programming. Using routines from this source has several

advantages: The routines are available in a standard usable form.

Descriptions are available. The routines are completely checked out.

And advice and assistance are available if needed. The other FORAST

programs and the "other" FORTRAN routines have special features which

may compensate for their defects in availability, standardization, etc.

We have classified these routines as interpolating routines,

fitting routines, least squares routines, and function minimizing

routines. Such a division must be arbitrary. We have elected to call

the method "interpolation" if the principal result is the value of the

approximating function at a prescribed value of the independent variable.

If the main output of the routine is an equation or the values of

parameters in a prescribed equation, we call it a "fitting" routine.

Those fitting procedures which use the principle of least squares are

referred to as "least squares" routines.

It seems to be general practice to drop the adjective "linear" in

discussion of linear least squares and to use the adjective "nonlinear"

when referring to least squares procedures which are not necessarily

linear in the unknown parameters. This practice has been followed

here in naming and discussing the routines. To further complicate these

titles, the adjectives "general" and "polynomial" are used to denote

the type of terms permitted in linear least squares.

The function minimizing routines are separated from the other

routines because the user is free to choose the measure of the goodness

of the approximation. The user pays for this freedom with coding and

some loss of confidence in the results.

DVDINT (D.D.IN in FORAST)

This standard subroutine uses divided differences to approximate

the value of y corresponding to x from a table (x.,y.), i=l,2,...,N,

ordered on x. The approximating function is an M-th degree polynomial

through M + 1 points in the neighborhood of x.

MATINV, FNEQS (S.N.E. , F.N.E., etc. in FORAST)

The MATINV subroutine is the standard FORTRAN subroutine for

solving a system of linear equations. The FNEQS subroutine may be used

to help convert raw data to the normal equations of least squares and

the MATINV subroutine may be used to solve this system. In FORAST, the

F.N.E. may be used to help form the normal equations, in the form of an

augmented upper triangular matrix, and the SY.SNE or SY.INV used to

solve the system. One can also use the F.O.MAT to form the full

rectangular augmented matrix from the triangular form and use the S.N.E.

or MAT.INV. to solve the system.

It is generally better to use one of the next two subroutines for

linear least squares.

GENLSQ (G.L.SQ in FORAST)

Starting from a table of data (y. ,cp (X.) ,cpp(X.),.. . ,cpM(X.)),

i=l,2,...,N, this routine carries out a linear least squares fit. It

finds A = (a1,a2,...,aM) so that U(A) =/_ji=1(y± ~ £1=1*1^0^))
is a

minimum with respect to the a.'s. This routine will also compute some

information to help the user analyze the fit: the root-mean-square

1 «N
error, (U(A)/(N-M))5; the residuals, R. = y. -) . _a.cp.(X.)j a., the

1 1 i~jj-l J J 1 j

estimates of the error in a.: and t. = a.la., the estimates of the

significance of a ..
J 10

The FORAST subroutine allows more flexibility in the storage of the

input data and permits more flexibility in weighting or eliminating data

points.

POLYLS (P.L.SQ in FORAST)

This is simply a special case of GENLSQ (G.L.SQ) for polynomial

least squares with one independent variable. The input is N pairs of

numbers (x.,y.). The program minimizes the equation

VN VN 'I?
U(A) =) ._,(y. -) . ,a.x"?~) . The FORAST program has an option for

dropping some of the powers of x.

FNM1N (FN.MIN in FORAST)

This is a standard subroutine for finding the minimum of a function

of several variables without using derivatives. The least squares

programs we have just discussed find the minimum of U(A) = () ._nR.) ,
L-ji—1 i

where the R. are linear in a.. ,a_,. . . ,EL,. This minimizing program could

be used to minimize U(A) if the R. are not linear in the a.'s or if
i J

some other measure of the goodness of the fit were used. The user must

supply programming to evaluate U(A).

FDMIN (FD.MIN in FORAST)

This is another function minimizing routine. It uses the first

partial derivatives of the function to be minimized. The user must

supply programming which evaluates U(A) and dU(A)/äa., j=l,2,...,M.
J

LEAST SQUARES PROGRAM

This complete FORAST program reads control cards that specify the

type and form of a linear least squares fit, reads the data, computes

the fit, and prints the coefficients, the approximate function value at

each point, the corresponding residuals, the root-mean-square error, and

the "sigma and t" error indicators.

11

MULTIPLE REGKESSION PROGRAM

This complete FORAST program is similar to the previous program in

set up and control. The very important difference is that the given

approximating equation is a listing of possible terms to be included in

a linear least squares fit. This routine selects an equation that has

only significant terms and then carries out a least squares fit to find

the best coefficients for this equation. In addition to output like the

LEAST SQUARES PROGRAM, this program prints a running account of the

terms added to or dropped from the tentative equation and prints the

terms in the final equation.

NONLINEAR LEAST SQUARES

This complete FORAST program is a program for finding the "best"

parameters in the least squares sense for an approximating function

which is not linear in all the parameters. If the function F(X,A) is

used to approximate y, the best approximation in the least squares

sense occurs when U(A) =)-_-,(y. - P(X-^A)) is a minimum. F(X,A) is

approximated with the linear terms of Taylor's series (i.e.,

- VM

F(X.,A) = F(X.,A) +) . ,Aa.dF./da., where A is a good initial

approximation to A, and dF./da. is the partial derivative of F(X,A)
— d

evaluated for A = A and X = X.). The standard procedure for linear
l

least squares is used to find Aa., j=l,2,...,M, so that
J

U(M)). ,(y. - F(X,A) -) . ..Aa.SF./da..) is minimized. Then a.,
£-a=lwi ^.1=1 .1 i .r .i'

j=l,2,...,M, is replaced by a. + pAa., 0 < p ^ 1. With luck, and a
J J

good initial guess, this method will converge to the "best" answer.

This program requires more input information than the linear LEAST

SQUARES PROGRAM. In addition to output like the LEAST SQUARES PROGRAM,

this program prints information about each iteration.

12

PIECEWISE QUARTIC FIT

This complete FORAST program approximates a bivariate table of data

(x.,y.), i=l,2,...,N, with a series of connected quartic polynomials.

As many points as possible (without exceeding a specified least squares

error) are placed in each succeeding polynomial. The resulting

approximating function is continuous and has continuous first derivatives.

CUBIC SPLINE

This complete FORAST program fits N data points (x.,y.), i=l,2,...,N,

with N - 1 cubic equations. The approximating function passes through

each data point, is continuous, and has continuous first and second

derivatives.

LEAST SQUARES CUBIC SPLINE

This complete FORAST program fits N data points (x.,y.), i=l,2,...,N,

with a prescribed number, say K, cubic equations. The user specifies the

abscissas for K + 1 "break points". The program finds the K + 1

corresponding ordinates so that the cubic spline function F(x), through

these break points, makes) ._-,(y. - F(x.)) a minimum.

POLYGONAL CURVE

It is sometimes useful to approximate bivariate data by a series of

connected straight lines. This program uses dynamic programming to

locate the best values of the independent variable for the ends of a

specified number of straight lines. For these "break points", the

approximating polygonal curve is the best in the least squares sense.

CONSTRAINED NONLINEAR LEAST SQUARES

Sometimes we want to approximate a set of data (X.,y.), i=l,2,...,N,

with a function F(X,A) and at the same time satisfy a number, say K,

inequality (and/or equality) constraints G (A) ^ 0 (or G (A) = 0),

k=l,2,...,K. This FORTRAN program finds an approximate answer to this

13

problem by minimizing the function U(A) =)._,(f.(A)) , where

f.(A) = y. - F(X.,A) for i=l,2,...,N, and fN+k(A) = GR(A) for

unsatisfied constraints (f (A) = 0 if G (A) is an inequality

constraint greater than 0).

The user must supply three subroutines: FCODE to evaluate f.(A),

PCODE to evaluate of./da., j=l,2,...,M, and SUBZ to set up some initial

conditions. The program uses a combination of the differential

correction method (used by the FORAST NONLINEAR LEAST SQUARES program)

and steepest descent to minimize U(A). This method should converge in

most cases.

NONLINEAR LEAST SQUARES FOR CORRELATED DATA

This FORTRAN routine is somewhat different than the other least
— T

squares routines. The data points consist of X. = (x., ,x ,...,x) ;

m., the standard error of weight one: and R., the correlation matrix of
i J

cofactors. The object of the program is to find %. = X. - X.,

i=l,2,...,N, and A = (a^a^ . . . ,3^) sothatU(^) = ^^(^ \) " l±
is

minimized and F(X. + %.,A) = 0 for i=l,2,...,N. The user must supply

a main program which sets up the input and controls the iterations, and

a subroutine to compute F(X. + §.,A), and the partial derivatives of

this F with respect to § , k=l,2,...,K, and a., j=l,2,...,M.
IK j

NLFROG

This is a function minimizing FORTRAN subroutine which permits

constraints. If U(A) is the function to be minimized subject to the

inequality constraints G, (A) S 0, k=l,2,...,J, and the equality

constraints G (A) = 0, k=J+l,J+2,...,J+K, this subroutine is designed to

^-iJ r-iJ+K p i
minimize P(A,p) = U(A) + p V I/G (A) +)k=J+1G (A)/p over the region

Q = (A:Gk(A) £ 0, k=l,2,...,j] for p=P1,pg,...,pL with Pr > pr+1 > 0

Ik

until pT) ,l/G (A) < 9. If the original estimate for A is not in Q,

the routine will first try to find an initial A which is in Q. Actually,

NLFROG is one of four different routines depending on the method used

to minimize P(A,p). Two of these are direct search methods which do not

require derivatives. One is a quasi- Newton method which uses first

derivatives (the partials of F and G with respect to a.). The other

routine uses Newton's method, which requires first and second partial

derivatives.

The user must code a main program to supply the initial data and

control parameters for NLPROG. He must also supply a subroutine to

evaluate F and the G, and, if needed, a subroutine to evaluate their

derivatives.

III. GENERAL DISCUSSION

A. Classification of Routines

In the previous section we characterized the BRLESC function

approximation routines as FORAST or FORTRAN routines, as standard sub-

routines or something else, and as "interpolating", "fitting", or

"function minimizing" routines. The separation between FORAST and

FORTRAN routines is necessary and definite. The distinction between the

standard subroutines and other routines is also useful and quite clear.

(The standard subroutines are all on the FORAST compiler tape and

equivalent FORTRAN subroutines are available on cards.) The third

classification is very arbitrary. The broadest definition of any of

the three terms includes all the routines. An "interpolating" routine,

by our definition, is one that produces a numerical estimate of the

dependent variable for a given set of the independent variables. Thus,

we had only one interpolating routine, the standard divided difference

interpolation routine. It is convenient to classify the three

"function minimizing" routines separately because the user is free to

choose the measure of "goodness" of the fit. All the remaining "fitting"

routines except the CUBIC SPLINE use the principle of least squares.

15

There are several other classifications which are convenient for

some purposes. We can separate the bivariate routines and the routines

that can be used with more than two variables. We can also classify

the routines by continuity, smoothness, or by the measure of goodness

of the fit. Some of the routines use or permit constraints. These

topics will be taken up in the next paragraphs.

B. Goodness of Approximation and Constraints

Approximating functions generally satisfy some set of constraints,

optimize some measure of goodness of the fit, or do both. The

approximating functions for two of our BRLESC routines, the DVDINT and

the CUBIC SPLINE, are completely determined by constraints. For the

three function minimizing routines, the function to be minimized is

selected by the user (and computed by a user coded program). All the

other routines use the principle of least squares and minimize the sum

HN V 2 of squares of the residuals,) ._,R.

The user of the function minimizing routines may choose the sum of

squares of residuals, U(A) =) ._-,R..> as the function to minimize. (This

r^N 2 i
is equivalent to minimizing Q ._-,R.)£, the so-called "Euclidean" norm.)

Another useful choice is U(A) = Maximum|R.|, i=l,2,...,N, the

"Tchebycheff" or "uniform" norm used to find the minimax or Tchebycheff

solution. The norm U(A) =) ._,|R.| is another frequently mentioned

choice. The form of the approximating function is selected by the user.

In some of the least squares routines the form of the approximating

function is specified by the routine. In others the user may select

this function. The residuals for all the least squares routines, except

the NONLINEAR LEAST SQUARES FOR CORRELATED DATA program, are the

difference between the given value of the dependent variable and the

approximated value (i.e., R. = y.-F(X.,A)). The measure of goodness of

16

the fit is the unbiased estimate of the standard deviation,

VN 2 h
ERMS = Q ._-|R-/(N_M)) > where N is the number of data points and M is

the number of coefficients determined by the routine.

The NONLINEAR LEAST SQUARES FOR CORRELATED DATA program is somewhat
T

different. The N data points consist of X. = (x... ,x. _,x.„) , the
l ll i2 ' lK '

measured values of the variables; m. _, the standard error of weight one;

and R., the correlation matrix of cofactors. The coefficients
1'

A = (a, ,a „,. . . ,a^) and the correction vectors %,., i=l,2,...,N, are found

VN T -1
so that F(X.+|..A) = 0 for all i and u(|) =), n|.(m.R.) E. is a

l

minimum. (U(^)/(N-M)) is used as the measure of goodness of the fit.

The FORTRAN routine, CONSTRAINED NONLINEAR LEAST SQUARES permits

constraints. For this program the user must compute the constraints

G., j=l,2,...,J as well as the residuals R., i=l,2,...,N and their

first derivatives so he may define them as he wishes. The routine

VN 2 VJ 2 VN 2 i
minimizes U*(A) =). R. +) , ,G .. The routine prints () . R./(N-M))a

and several other quantities to help determine the validity and goodness

of the approximation.

C. Bivariate Routines

Some of the routines are designed to handle many variables but a

few are restricted to two variables, a dependent variable y, and an

independent variable x. All of these approximate y by a polynomial or

set of polynomials in x. The routines restricted to two variables are

DVDINT (D.D.IN), POLYLS (P.L.SQ), PIECEWISE QUARTIC FIT, CUBIC SPLINE,

LEAST SQUARES CUBIC SPLINE, and POLYGONAL CURVE. The first of these

routines is polynomial interpolation. The others are substitutes for

polynomial interpolation which may remove or reduce the main objections

to interpolation.

1. Interpolation. We have defined an interpolation routine as one

which supplies a value of the independent variable. This is a very

17

narrow definition but it describes the purpose of the DVDINT subroutine

quite well From experience we think of interpolation as a process by

which we can approximate the value of a dependent variable between

values given in a table. If we include approximation for the given

points as well, we are describing a process that approximates the

tabular function by some other function. In this broader sense, all the

routines discussed in this report are interpolation routines.

Any text on numerical methods devotes some space to interpolation.

There is usually some mention of interpolation involving more than one

independent variable and some discussion about using various functions,

including trigonometric functions to interpolate with; but the major

portion of the discussion is restricted to interpolation by polynomials.

Most of the familiar methods of interpolation (e.g., Aitken's iterative

interpolation, Lagrange's interpolation formula, Newton's forward and

backward difference methods, divided difference, etc.) are just different

ways of evaluating an M-th degree polynomial through M + 1 points near

x in a table (x ,y.). The Newton's interpolation formula with divided

differences was chosen for the standard interpolation routine (DVDINT

in FORTRAN, D.D.IN in FORAST). This routine is easy to use, efficient,

and accurate. Unfortunately, it is so familiar and well documented that

we do not give its use enough thought, let alone check the results.

Polynomial interpolation has some drawbacks: If we consider the

approximation over the entire range of the table, the function changes

at most of the data points and the derivatives fail to exist at these

points, even though the function itself is continuous. A high degree

polynomial may oscillate wildly and errors in the data tend to augment

this oscillation. This is pointed out in the Example . Finally, it is

too easy to overlook gross errors in the data.

2. Other Bivariate Routines. The other bivariate routines are, in

a real sense, substitutes for polynomial interpolation which remove or

reduce one or more of the objectionable features of polynomial

interpolation. These routines, except CUBIC SPLINE, use least squares

and consequently reduce the effect of small errors. Some of these

18

routines produce all the residuals, hence, large errors in the data

points can be discovered. The other routines use two or more polynomials

connected at points we call "break points".

The approximate function from the CUBIC SPLINE routine passes

through each data point. A different cubic polynomial is used between

each pair of data points. This approximation has continuous first and

second derivatives.

The x coordinates of the break points for the LEAST SQUARES CUBIC

SPLINE routine must be chosen by the user. The routine chooses the

corresponding y coordinates so that the cubic spline function through

the break points produces the minimum sum of squares of residuals. This

approximating function also has continuous first and second derivatives.

The break points for the POLYGONAL CURVE are selected by the program.

(The user must state the number of them to be used.) There are no

derivatives at these break points since the straight lines which meet

there have different slopes.

The PIECEWISE QUARTIC FIT routine selects its own break points

from the data points. As many data points as possible, without causing

too large an ERMS error, are included between each break point. The

approximating function passes through each of these break points and

has a continuous first derivative there.

With the exception of the divided difference interpolation

subroutine, the polynomial least squares subroutine, POLYLS, is the

easiest of the bivariate routines to use. If a good fit can be made

with a low degree polynomial, this is an excellent choice. Unfortunately,

even with least squares, approximations with high degree polynomials tend

to have undesirable oscillations.

The bivariate routines, with the exception of POLYLS must have the

data ordered on the independent variable. The DVDINT subroutine

permits either increasing or decreasing ordering. The other routines

assume strictly increasing x.'s.

19

3- Smoothness. Although it is possible to use multivariate

approximating functions which have discontinuities or other disagreeable

features, the usual function chosen is continuous and has continuous

derivatives throughout the entire range of definition. This is not as

generally true for bivariate approximating functions. Approximation by

polynomial interpolation produces an approximating function which does

not have derivatives at most of the data points. A least squares fit over

the entire range of the data produces an approximating function with

continuous derivatives of all orders; but fitting with a low degree

polynomial may give a poor approximation at the data points, and fitting

with a high degree polynomial may give good results at the data points

but unbelievable intermediate values. The PIECEWISE QUARTIC FIT program

produces an approximation that has continuous first derivatives and

should not oscillate too wildly. The CUBIC SPLINE and the LEAST SQUARES

CUBIC SPLINE programs produce an approximating function that has

continuous first and second derivatives. Spline functions have received

a great deal of attention recently because of their "smoothness"

properties. In particular, the cubic spline function, say S(x), over
2 2

N ^ 3 data points, with d S/dx = 0 at x and x^ satisfies

x_ XN
r 2 22 I" 2 22

(d S(x)/dx) dx ^ I (d f(x)/dx) dx where f(x) is any continuous
xl Xl

function with continuous first and second derivatives which satisfies

f(x1) = y±, i=l,2,...,N.

k. Checking. A graph of the approximating function with the

original data points superposed gives an excellent qualitative check of

approximations in two variables. Gross errors in the input data are

evident; and unusual features of the results, such as excessive

oscillation or poor approximation in some particular region, are obvious.

This check requires extra work, but it is worthwhile.

20

D. Least Squares

Most of the fitting programs for the BRLESC are based on the

principle of least squares applied to a discrete set of points (X.,y.),

i=l,2,...,N. It is assumed there is some function Y(x) for which

Y(X.) = y. . (X. may be a single variable or a vector,
111 m

X. = (x.,,x.„,...,x) .) The function Y(X) is to be approximated by a

function F(X,A) where A represents the M unknown parameters a ,a ,. ..,SL..

The "best" fit in the least squares sense (for a particular function

F(X,A) relative to a non-negative weighting function w(X), over the set

of N data points) is achieved when A is found such that

U(A) = V. w(X)(Y(X) - f(X±,A))2 is a minimum. For this to be

meaningful, there must be at least as many data points as unknown

parameters (i.e., N ^ M). We will assume w(x) = 1 in what follows.

This is the most frequent choice.

1. Linear Least Squares Routines. If F(X,A), the approximating

function, is linear with respect to the M unknown parameters

VN VJ 2
a1,a2,...,aM we can write U(A) = }_i±=:1(y± " 2Jj=lajcpj^Xi^ where the

cp.(X), j=l,2,...,M, are M suitable functions of X. (As far as the fit
J

is concerned, the cp.(X) do not have to be defined except at the N data
J

points. However, if the result is to be useful they should be well

behaved and fairly easy to evaluate for all X in the range of the fit.)

The function U(A) will be a minimum if äu/äa, = 0, k=l,2,...,M. This

is a system of M linear equations, called "normal equations", in the M

unknown a.:
J

k=l,2,...,M.

This can be rewritten in matrix notation as WA = V, where A is the vector

•JJ T VN
(a,a , . ..,a) , W is the symmetric MxM matrix with) ._cp. (X.)cp(X.)

21

T
as the element in row j column k, and V is the vector (v ,vp,...,vM)

VN with v, =) . ,cp. (X.)y. . (If we consider cp. (X.) to be the j-th element
k Zji=lTkv i Ji J I

in the i-th row of an NxM matrix P, and y. the i-th element in a vector
T T 1

Y, we can write W = P P and V = P Y. The normal equations are frequently

written in the form PTPA = P Y.)

The normal equations can be solved for A (A = W v) if W is not

singular. (The BRLESC routines for solving systems of equations use

some form of Gauss elimination.) The accuracy of this solution depends

on how well conditioned W is, how large M is, and the number of digits

carried by the routine. The BRLESC single precision carries about 16

decimal digits which is equivalent to double precision on most

computers.

Classical theory recognizes three situations for linear systems of

equations: (l) The equations are inconsistent (e.g., x + y = 1,

x + y = 2), hence no solution exists. (2) The equations are not

independent (e.g., x + y = 1, 2x + 2y = 2), in which case an infinity of

solutions exist. (5) There is a unique solution. In theory it is

easy to tell these cases apart, but in practice machine round-off error

blurs the differentiation between the three cases.

A frequent error in using linear least squares is to choose a set

of functions, cp (X), k=l,2,...,M, which are not really independent over

the data being fitted. In one's zeal to find an answer quickly, it is

easy to overlook even simple dependent relations among functions. The

particular set of data and the limitation of machine accuracy sometimes

make the choice of clearly independent functions more difficult. For
5 k h h example, if x is greater than 10 , x + 1 = x on BRLESC; hence, x and

h 5 x + 1 are not independent on BRLESC for x greater than 10 .

(Similarly, x" +1=1 for x > 10 .)

22

The easiest way to get a linear least squares fit is to use the

FORAST LEAST SQUARES PROGRAM. This allows a fair amount of flexibility

with a minimum of programming and gives "best" coefficients and some

results to check the goodness of the fit. Some formula cards and

control cards must be prepared, but no coding is needed. The MULTIPLE

REGRESSION program is almost as easy to use. It will select a

statistically significant submodel, from a candidate model suggested

by the user, before carrying out the final fit. The two subroutines

GENLSQ and POLYLS (G.L.SQ and P.L.SQ in FORAST) are also easy to use.

The user must set up the data in the BRLESC in a specified form, call

the subroutine, and then print, or use, the results as he wishes. All

these routines produce some results for judging the goodness of the fit.

The FNEQS and MATINV (F.N.E. and SY.SNE in FORAST) subroutines require

more programming but they permit some additional freedom.

2. Nonlinear Least Squares. If F(X,A), the approximating function,

VN 2 is not linear in the a., the minimization of U(A) =) ._,(y. - F(X.,A))

is more difficult. The solution generally requires iteration and some-

times the iteration fails to converge. Three of the programs on our

list are called "nonlinear least squares" programs. They are quite

different. The simplest of the three programs and the easiest to use

is the FORAST NONLINEAR LEAST SQUARES PROGRAM which is similar to the

FORAST linear LEAST SQUARES PROGRAM. This program uses an iteration

method for minimizing u(A) which is sometimes called the Gauss-Newton

method, but is locally called differential corrections.

The FORTRAN routine called CONSTRAINED NONLINEAR LEAST SQUARES is

more difficult to use, but it has some features that might make it

desirable. It permits constraints by adding the squares of the

constraints to the sum of the squares of the residuals. The resulting

function is minimized with a combination of the method of steepest
19 descent and the method of differential corrections that should converge

in most cases.

23

The third nonlinear least squares routine is the FORTRAN routine

called NONLINEAR LEAST SQUARES FOR CORRELATED DATA. This routine uses
 rn

N data points in the form: X. = (x.n.x,-J...,x.J , the measured value
l il' i2' iK

of the i-th data point (Notice that no dependent variable is

prescribed.); m., the standard error of weight one; and R., a KxK

correlation matrix of cofactors. The nonlinear relation F(X,A) selected

by the user is assumed to be exact at each of the N points. The only

errors being errors in each of the NK variables x (i=l,2,...,N;
IK.

k=l,2,...,K).

E. Function Minimizing Routines

If the approximating function F(X,A) is "best" when some function

U(A) is a minimum, the function minimizing routines are a rather natural

choice of routine for finding the "best" value of A. In the case of

=lL(v2> least squares, U(A) =) (R.) , where R. is the i-th residual. This

choice of U(A) is frequently chosen because it is meaningful and easy

to analyze. More efficient routines are available for linear least

squares problems, but the subroutines FNMIN and FDMIN have been used for

some nonlinear least squares problems. Two other fairly common choices

VN
of U(A) for discrete data are U(A) =) .JR. | and U(A) = Maximum |R. |.

Other useful choices are possible. FNMIN is the easiest of the function

minimizing routines to use. The user must code a subroutine that

supplies U(A) for any given A. FDMIN requires dU(A)/äa , j=l,2,...,M,
J

in addition to U(A). Neither of these standard subroutines permit

constraints. One might reach a satisfactory solution for a constrained

problem by adding a penalty function to U(A), but the nonstandard

FORTRAN subroutine NLFROG is probably a better choice. As an

illustration of a penalty function, suppose we want to minimize

U*(A) =)-_yR- but have constraints G (A) = 0, r=l,2,...,S. We can

VN VS 2
define U(A) =) R +) w G (A) where the w are positive weights.

2k

By adjusting the weights w , it is possible to obtain an acceptable

approximation. The CONSTRAINED NONLINEAR LEAST SQUARES routine uses

such a method. The NLPROG routine uses this method to handle equality-

constraints and a sum of the form) w /G (A) for inequality constraints.

F. Example

This simple example was chosen to illustrate the effect of errors

in data upon interpolation. The table of data (l,l), (2,lwU), (2.1,U),
2

(3,9) was generated by perturbing the y values of y = x . The data

could realistically be for this function if the readings were accurate

to within .5 or if they were accurate to within .01 with the y values

for x = 2.0 and x = 2.1 reversed. What is unrealistic is that the "true"

function is known.

The approximating functions corresponding to linear, quadratic, and

cubic interpolation, the cubic spline, and the best least squares

quadratic were found. The DVDINT does not specifically display its

approximating function as we do here.

Linear Interpolation

F(x) = 3.Ux-2.U 0 £ x £ 2

F(x) = -Ux+12.U 2 <: x ^ 2.1

F(x) = (50x-69)/9 2.1 s x ^ 3.55

Quadratic Interpolation

F(x) = (-7^0x2+259Ux-l7UUo)/llO 0 <; x < 2.1

F(x) = (860x2-3886x+U728)/90 2.1 ^ x ^ 3.55

Cubic Interpolation

F(x) = (8o60x5-U7766x2+902UUx-U95U8)/990 0 ^ x ^ 3-55

25

Least Squares Quadratic

F(x) = .99992l4-UUx2-.Oi9998l4-9x+.0585M4-7l

Cubic Spline Fit

F(x) = -5.58896^8l8(x-l)546.98896U8x-5.98896U8l8 l s x < 2

F(x) = 55.8896^8l8(x-2.l)5+U9.57226005(x-2)5-U.85^6l9082x
+14.14512781 2 s x < 2.1

F(x) = 5.50802889(5-x)5+lO.OiT05895x-2l.0511T688 2.1 < x < 5

The following list shows F(x) and R(x) = F(x)-x at x = 0, 1.5,

and 2.5 for each of these approximating functions.

Method F(0) = R(0) F(1.5) R(1.5) F(2.5) R(2.5)

Linear Int. - 2.4 2.7 .45 6.222 - .028
Quad. Int. -15.8 U.582 2.152 I+.5II -I.939
Cubic Int. -5O.O 5.605 5-353 5.^97 -2.753
L. Sq. Quad. .058 2.258 .008 6.258 - .012
Cubic Spline - 2.4 k.ok6 1.796 4.680 -I.57O

This table shows that increasing the degree of the interpolating

polynomial will not necessarily produce better estimates of the "true"

function. The extrapolation to x = 0 demonstrates why extrapolation

from tabular data is so universally condemned.

2
From the viewpoint of approximating x from the table of data, the

least squares quadratic was fairly successful. However, if we consider

this fit without a priori knowledge of the "true" function, it too is

quite poor. The estimated standard error, ERMS, is .572. This is a

rather large error for numbers between 1 and 9« The following table of

coefficients "sigmas and t's" shows that the fit is really not very-

significant. a_ and a, have no significance and even a, is of

doubtful validity. (A frequently used rule-of-thumb is to discard all

coefficients with corresponding t's less than 2.) The residuals for the

four points are -.02, .40, -.40, and .02, respectively.

26

j a. a. t.
J J J

1 -9999 -575 1.738
2 -.0200 2.164 -.009
3 .0383 2.322 .018

With only four points we can tell very little about the data from

the residuals, but suppose we investigated the data and discovered that

the y and y, had been interchanged. The best least squares quadratic

fit for the four points (l,l), (2,4), (2.1,4.4), (3,9) is

F(x) = 1.00496l84x2-.02009923x+.01536407-

This produces residuals (.00023, -.00499, .00504, -.00028),

ERMS = .0071, and

j a. a. t.
J J J

1 I.OO4962 .00714 140.8
2 -.020099 .02881 -.698
3 .01536407 .02685 .572

Again ap and a are not significant, but a, is. If we refit without

a and a we get F(x)=-9996245x with residuals (-.OOO38, -.0015, .OO83,

-.0034) and ERMS = .0053- Notice that the residuals are generally

larger, but the unbiased estimate of error has dropped from .0071 to

.0053 with the deletion of a~ and a,. 2 5

IV. DESCRIPTION OF ROUTINES

The use of each of the routines will be discussed in this section.

The details of implementing the routines are presumably contained in the

program write ups, most of which are included in the Appendix. What I

hope to do is briefly describe what the routine is supposed to do,

indicate the amount of work necessary to use the routines, point out

any unusual difficulties, and add any other remarks that seem pertinent.

27

DVDINT^ (D.D.IN3 in FORAST)

This standard subroutine uses Newton's divided difference method of

polynomial interpolation. The data (x.,y.), i=l,2,...,N, must be ordered

on the dependent variable x, either strictly monotone increasing or

strictly monotone decreasing. The value of x for which F(x), the

approximating function, is desired must be between x,-(x„-x) and

x^+(x^-x^). The approximating function is an (M-l)th degree

polynomial through M points near x. The resulting function is

continuous and passes through each of the data points. The derivative

however is not continuous. It fails to exist at most of the interior

points.

The most frequent error made with this subroutine is attempting to

extrapolate outside the acceptable range. The program produces an error

and halts when this occurs. Occasionally someone specifies M greater

than N and gets the same error print. It is my opinion that if M

greater than three is used, the user should not only substantiate his

choice, but also produce a graph of the fitted function with the data

superposed. The inspection of such a graph can also reveal errors in

the input data.

Instructions for using this subroutine are in the appendix.

MATINV, FWEQS^ (S.N.E., F.N.E. etc.? in FORAST)

The standard subroutine for solving a system of linear equations,

MATINV, can be used to solve the "normal equations" associated with

linear least squares. For linear least squares the approximating

function is linear in the M unknown coefficients. That is

F(X,A) =)._ a.cp.(x) where the cp.(X) are appropriately chosen, usually

well behaved functions. We wish to find A = (a ,ap,...,a^) that

minimizes U(A) =) .,(y.-) a.cp.(X.)) . Such an A satisfies

28

9U(A)/9ak = 0, k=l,2,...,M, or

rM -N VN

Zj=i ajZi=icpk(xi)cpj(xi) = L±=i\ixi)yi> k=1>2>--->M- These are the

so-called "normal equations". The formation of the matrix of

coefficients for these normal equations is usually best accomplished by-

using FNEQS, the form normal equations subroutine. These programs do

not contain checking features, except for an error print from MA.TINV if

a singular matrix occurs. The user is advised to use GENLSQ or POLYLS

subroutines or the LEAST SQUARES PROGRAM instead.

One frequently made error in using linear least squares fitting

procedures is to choose functional terms which are not really independent

over the given set of data. The result can be an equation that fits the

particular set of data used, but is useless for intermediate points. If

possible, it is useful to reserve some data for an independent check of

the fit. A reasonable rule-of-thumb is to have three or four data

points for each unknown coefficient. If M is large, the accumulated

roundoff error in inverting even well behaved matrices may produce

inaccurate results.

Instructions for using these subroutines are in the Appendix.

GENLSQ and POLYLS (G.L.SQ and P.L.SQ in FORAST)

The GENLSQ, general least squares, routine is a standard subroutine

for making a linear least squares fit. The input requirements are the

matrix (cp.(X.)), (j=l,2,...,M; i=l,2,...,N) and the vector of the

T
dependent variable, (y ,y?,...,y) , where the desired approximating

VM
function is F(X,A) =) a.cp.(x). The POLYLS, polynomial least squares,

is a modification of GENLSQ for polynomials in one dependent variable.
m

In this case, the user need only supply the two vectors (x ,xp,...,x^)

and (y1,y2,..' >y*,) , and the subroutine automatically uses

cp (x) = x^" . (The FORAST version allows more flexibility in choosing

terms and permits weighting and omitting data points.)

29

These routines will compute a., j=l,2,...,M, which are "best" in

VN 2 the least squares sense. That is, U(A) =) (y.-F(X.,A)) is a

minimum. These routines will compute the approximate values of the

function F(X.,A), the residuals R. = y.-F(X.,A), the unbiased root-mean-

square error ERMS = () ._,(R.)/(N-M))5, the estimates of error for each

coefficient a., and an estimate of the significance of the coefficients
0

t. = a ./o..
J 0 0

These routines are easy to use although it is easy to omit or

misplace one of the many dummy variables. However, as with most

programs, the most troublesome and very common errors are errors in the

data. The problems with functional dependence and errors in matrix

inversion if M is large are still present. An independent check of the

resulting approximation is always desirable.

Instructions for using these subroutines are in the Appendix.

FNMIN and FDMIN^' (FN.MIN9 and FD.MM10 in FQRAST)

These two standard subroutines are function minimizing routines.

They can be used to attempt to solve function approximation problems.
T

Suppose we wish to find A = (a.,ap,...,ELJ which makes U(A) a minimum.

These two subroutines attempt to minimize U(A) directly. FNMIN uses

a direct search technique which does not require derivatives. FDMIK

uses a quasi-Newton method which does require first derivatives of U(A)

with respect to each of the a..
0

The user must supply the initial guess for A, some control

parameters, and a subroutine to evaluate U(A), (U(A) and oU(A)/oa.,

j=l,2,...,M, for FDMIN). The programs are easy to use. However, they

are rather slow (compared to linear least squares) and convergence to

the "best" answer is uncertain. If the location of the minimum of U(A)

is critical, it is desirable to check the results of these minimizing

30

programs. If the function U(A) is sufficiently well behaved, some

analysis may confirm the results, but this is not always possible. One

partial check is to repeat the minimization from several different

initial positions. If the same solution is reached several times, the

existence of at least a local minimum there is fairly well established.

Most of the difficulties with these two routines have been from

errors in programming the evaluation of the function or its derivatives,

or from using a U(A) which does not have a minimum for finite A.

Neither of these routines accept constraints. Constraints can

sometimes be included by using a penalty function, but the more general,

nonstandard, FORTRAN subroutine NLPROG should be a better choice.

Instructions for using these subroutines are in the Appendix.

LEAST SQUARES PROGRAM12, MULTIPLE REGRESSION1^, NONLINEAR LEAST SQUARES1^*

These three routines are grouped together because of their many

similarities. All three are complete FORAST programs (programmed by

L. W. Campbell) which need the same type of formula definition cards

and control cards. All of them have been modified since their

respective descriptions were written. In particular, the restrictions

on the number of unknowns has been greatly increased in every case. It

is desirable to get a program deck directly from System Programming,

Computer Service Division, along with information as to just what

options and changes it contains. It might also be wise to ask someone

from Systems Programming to check the completeness and correctness of

the first set of cards prepared for one of these programs.

Despite some uncertainty as to just what the programs will do and

their exact implementation, these programs should be given first

consideration for any least squares fitting project. The fact that they

are complete programs is both an advantage and a disadvantage. Since

FORTRAN programs for MULTIPLE REGRESSION and NONLINEAR LEAST SQUARES
are available.

31

they are complete programs, no coding is required (formula cards and

control cards are used instead) and hence, no knowledge of FORAST (or

FORTRAN) is needed. Also, the results usually receive at least a

cursory check before being used for further computation. On the other

hand, the results of these programs are tabulations (or at best numbers

on cards) and are not directly available for use in other routines, as

the output of a subroutine would be.

In all three programs, the parameters which control the fitting

are punched on cards. Each data point, say (V1,V2,...,Vk) is read in

under the control of a FORMAT which may have to be changed. The user

defines the form of the equation by "formula control" cards. These

formula control cards may contain arithmetic operations and some

subroutines: SIN, COS, SQRT, LOG, EXP, ARCTAN and ARCSIN. For example,

Vl*EXP(v6) = V2**3+L0G(V3)+(VU+V5+SQRT(V7))$. This corresponds to the

formula Vle="ao"+a1V2
5+a2ine(V3)-^(vU+V5+VT

5). (The constant term,

a , would be automatically included in the multiple regression program,

unless specifically omitted, but not in the other two programs.) The

output for all of these programs includes the coefficients, approximate

function values, residuals, ERMS, and the "sigmas and t's" which indicate

the variance and significance of the coefficients.

The LEAST SQUARES PROGRAM is similar to the GENLSQ subroutine.

There is an option which simplifies the input if a polynomial fit with

one dependent variable is wanted. The LEAST SQUARES PROGRAM is still

available but the Computer Support Division now recommends using the

MULTIPLE REGRESSION program instead.

The MULTIPLE REGRESSION program treats the model prescribed on the

formula control cards as a candidate model. The program selects a

statistically significant submodel and gives coefficients, residuals,

etc., for this choice. A list of the terms as they are added or removed

from the regression model and the change in ERMS is also given.

Modifications for graphing and for an input tape for a companion program,

"Prediction Intervals for Estimates from Linear Regression Models",

are described in a description dated Nov. 19ÖT-

32

This very useful program is thoroughly described in Reference 13.

The NONLINEAR LEAST SQUARES program is similar to the LEAST SQUARES

PROGRAM. Since the formula is not linear in the unknown coefficients,

an iterative scheme, locally called "differential corrections", is used

VN 2
to attempt to minimize U(A) =) •_l(y1 - F(X.,A)) . F(X ,A) is expanded

in Taylor's series about the latest estimate of A, say A, discarding

quadratic and higher terms. AA = (Aa, ,Aap, . .. ,Aa„) is found so that

U*(AA) =) 1=1(y\; - F(X.,A) -) Aa dF(X. ,A)/3a) is a minimum, as in

linear least squares programs. Then, A is replaced by A + pAA,

(0 ^ p ^ l) and the process is repeated until each |Aa.| < e., or the

prescribed maximum number of iterations is exceeded.

The input for this routine is more involved than that for the last

two programs. F(X,A), the derivatives 3F(X,A)/da., j=l,2,...,M, and the

form y. - F =) ._ öF/öa. must all be described. The user must also

supply (e, ,€p,...,e„) and initial values of A. The output of the program

includes fairly detailed results for each iteration as well as F(X.,A),

the residuals y. - F(X.,A), and the "sigma and t" values for the final

iteration.

This program is also fairly easy to use. The fact that it is not

a subroutine is probably a good thing. The resulting approximation

should be examined critically before it is accepted. If one must have

a subroutine, he can code his own program using the differential

correction method and available linear least squares subroutines (or he

can try one of the function minimizing subroutines).

Instructions for using NONLINEAR LEAST SQUARES are in the Appendix.

These instructions refer to Reference 13.

33

The author has used the MULTIPLE REGRESSION program, but has no

direct experience with the other two programs in this section. Several

mistakes were made through carelessness: A FORMAT was wrong, a comma

was omitted after a redefinition formula, and a plus sign was lost when

a formula card was duplicated. Despite these minor troubles, which

point out the necessity for checking all computer input no matter how

simple, the MULTIPLE REGRESSION program was relatively easy to use.

PIECEWISE QUARTIC FIT, CUBIC SPLINE17, LEAST SQUARES CUBIC SPLINE

These three routines have many common features: They are all

complete FORAST programs. They are bivariate routines which serve as

alternatives to interpolation. The approximating function, a piecewise

low order polynomial, has continuous first derivatives (the spline

functions also have continuous second derivatives). Two conditions must

be stipulated for each routine in addition to the table of data points

(x.,y.), i=l,2,...,N. The data must be arranged so that the independent

variable, x, is strictly increasing (this may not be strictly necessary

for the LEAST SQUARES CUBIC SPLINE).

The PIECEWISE QUARTIC FIT uses a set of quartic equations to

approximate the table of data. The derivative dy/dx must be prescribed

at the first and last point. The approximating function passes through

the first and last point and through each "break point", the point where

the approximating function changes from one polynomial to another. The

derivative at each break point is set equal to the slope of the least

squares quadratic polynomial involving the break point and two points on

each side of it. The break points are chosen so that as many data

points as possible are included in the least squares fit for each

succeeding polynomial without exceeding a prescribed root-mean-square

error. Finally, if the coefficients of the quartic equation are not

significant enough, the quartic polynomial is replaced by a cubic

polynomial. This program should produce a very useful fit. I have had

no experience with it.

3k

The CUBIC SPLINE produces an approximating function which passes

through each data point, is continuous, and has continuous first and

second derivatives. Because of this continuity, this approximation

function may be preferable to polynomial interpolation. However it still

has the defect, in common with polynomial interpolation, that errors in

the data may be magnified in the approximating function. The

approximating function is a different cubic equation between each pair

of data points. One obvious disadvantage of this routine is the creation

of a lot of data. The table of data containing 2N numbers is replaced

by a table of 5(N-l) numbers: the independent variable in the original

data, and coefficients for N-l cubic equations.

The LEAST SQUARES CUBIC SPLINE routine alleviates the two main

disadvantages of the CUBIC SPLINE routine by replacing the constraint

that the approximating function must pass through each data point by a

least square condition. The user must decide how many cubic equations

he wishes, say K of them, and define the abscissas of the break points,

say x* ,x*p,...,x* ,. It may be difficult to choose good break points.

Common sense dictates that a fair number of data points be between each

break point, that x* ^ x and x* , ^ x^, and that more break points

are needed where the slope of the data is changing rapidly. A cubic

spline approximation, say F(x,A), is made through the points

(x* ,y*), k=l,2,...,K+1. The points y* are chosen by the routine so

that) ._ (y.-F(x.,A)) is a minimum.

The choice of good break points might prove to be troublesome, but

this appears to me to be the most attractive of the three routines

described in this section. It should be used more often.

At the present time, the only source of these routines is the

Firing Tables Branch of EBL. All three programs are currently being

updated. Updated programs and descriptions of them may be available by

the time this report is published.

35

1 £
POLYGONAL CURVE

This is a very specialized type of curve fitting. The bivariate

table of data (x.,y.), i=l,2,...,N is replaced by a function, F(x,A),

which is a specified number, say K, of connected straight lines. The

POLYGONAL CURATE program chooses break points in a very elegant manner

by combining dynamic programming and least squares to produce a

polygonal curve which has the "best choice" of break points (i.e.,

VW 2 corners) so that) ._,(y.-F(x.,A)) is a minimum. Reference 16 describes

the theory for these programs and gives some examples of results.

Several FORAST programs have been coded.

If a program deck or additional information is desired, contact

Mr. C. M. Frank, Army Materiel Systems Analysis Agency.

CONSTRAINED NONLINEAR LEAST SQUARES1^

This is the only routine in our list which was not developed at

BRL. This routine is a modification of a FORTRAN Share program

developed by D. W. Marquardt. It was obtained from Dr. Marquardt by

Hue McCoy, Firing Tables Branch, EBL. A few simple changes to make the

program compatible with the BRLESC FORTRAN were made by the author of

this report. At this time, the only problem which has been run locally,

with this program is a simple test problem. This program has been

included in our list because it has two features not available in our

other least squares programs: It permits constraints, and it uses a

method of solution which should be efficient and converge to the "best"

answer.

The constraints are included in the problem by simply adding the

squares of the unsatisfied constraints to the usual least squares

measure of goodness of fit. If there are K constraints, G, (A), the

program minimizes U(A) =)•_-, f., where f. = y.-F(X.,A) for i=l,2,...,N,

and fN+k = G, (A) or fN+k = 0 if G (A) is a satisfied inequality constraint.

36

The method of minimizing U(A) is a combination of the "differential

correction" method, used with the FORAST NONLINEAR LEAST SQUARES program,

and the well known method of steepest descent. (See Reference 19«)

The user of this FORTRAN program must code three subroutines:

FCODE to evaluate f., PCODE to evaluate öf /da , j=l,2,...,M, and SUBZ

to compute parameters needed by FCODE and PCODE.

This program has several attractive features. The two principal

ones being the ability to include constraints and the higher

probability of convergence than the FORAST NONLINEAR LEAST SQUARES

program. The program also supplies statistical results with which to

analyze the approximation. The user's subprogram computes each f. and

of./da.. This gives great flexibility to the definition of the

approximating function; hence, this program can be very versatile. For

example, it should be possible to use the program to attempt to solve a

system of nonlinear equations.

The program has two principal disadvantages: It requires a

considerable amount of coding and input, and anyone using the program is

on their own since no one locally has had experience with it.

At present, the only source of a program deck or description is

Hue McCoy of EBL or the author of this report.

NONLINEAR LEAST SQUARES FOR CORRELATED DATA1

This program is unique among the available BRLESC least squares

routines in that it assumes correlation of errors in the data. (A basic

assumption for all the other routines is that such correlation does not

exist.) This program assumes that the approximating function F(X,A) is
m

correct as to form, and F(X.,A) = 0 if X. = (x., ,x.0,...,x.„) and
' i' i il' 12' ' iK

A = (a ,ap,...,a^) are correct.

 _ m
The input for each data point consists of X. = (x,..x.n,...,x.J ,

l il' i2' ' iK '
the i-th estimate of the variables; m., the standard error of weight

one; and R , the KxK correlation matrix of cofactors. The routine

37

T
attempts to find E^ = il±1>li2'''"'^iK^ ' i=l,2,...,N and

T
A = (a,,a?,...,aM) so that F(X. + %.,A) - 0, i=l,2,...,N, and

'(5) -5li^f"^iJ"\ ' U(5) = ^lVVV ^ is a minimum.

The user must code a MAIN program which supplies the data and

controls the iteration of a subroutine COLSA (iteration is necessary

if F(X,A) is nonlinear) and the calling of a subroutine COLSB when a

satisfactory fit is found. The user must also code a subroutine to

supply F(X. + £,. ,A) and the first partial derivatives of this F with

respect to § , k=l,2,...,K, and with respect to a., j=l,2,...,M.
IK J

It is hard to draw any conclusions about a program without using

it, but the following things are obvious: A considerable amount of

coding must be done. The program is restricted to five independent

variables (x.,,x._,...,x._) and even with this restriction, 51 numbers

are needed for each data point. On the other hand, the output of COLSA

and COLSB are extensive and fairly self explanatory. Finally, this is

the only BRLESC routine available to perform least squares fits with

correlated data.

NLPROG11

This FORTRAN subroutine (actually a group of subroutines) was

designed to solve the general nonlinear programming problem: Minimize

U(A) subject to J inequality constraints G, (A) ^ 0, k=l,2,...,J and the

K equality constraints G (A) = 0, k=J+l,J+2,...,J+K. The G (A),
K K

k=l,2,...,J+K, and U(A) can be nonlinear functions of A = (a ,ap,...,a„)

This problem is replaced by the set of subproblems: Minimize P(A,p) =

U<A) + p YLl1^^ +YL Gk(A)/p? over A such that Gk(A) * °'
drl

k=l,2,...,J, for p = p £ ... £ p until p V _ l/G (A) is small enough.

There are four versions of this subroutine depending on the method used

38

to minimize P(A,p). The user codes a main program to supply data,

initial guesses at A, and a number of other parameters. He will also

have to code a subroutine to evaluate U(A) and the constraint equations,

Depending on which NLPROG version is used, the user may have to supply

first and second derivatives of U and each of the G, , just first

derivatives, or no derivatives at all.

This subroutine is nonstandard, it may be difficult to understand,

it requires a fair amount of programming and it will be difficult to

check the validity of the solution. On the other hand, it can be

applied to a wide variety of problems. This subroutine may converge

slightly better than the standard minimizing subroutines, FNMIN and

FDMIN, but these two subroutines are much easier to use.

At present, the only source of program decks is the author. A

complete description of this routine is included in Reference 11. Part

of that description is duplicated in the Appendix of this report.

39

REFERENCES

1. Lloyd W. Campbell and Glenn Beck, "The Instruction Code for the
BRL Electronic Scientific Computer (BRLESC)," Ballistic Research
Laboratories Memorandum Report No. 1379, November 196I.

2. Lloyd W. Campbell and Glenn Beck, "BRLESC i/ll FORTRAN," Aberdeen
Research and Development Center Technical Report No. 5> March 1970.

3. Lloyd W. Campbell and Glenn Beck, "The FORAST Programming
Language for ORDVAC and BRLESC (Revised)," Ballistic Research
Laboratories Report No. 1273, March 1965- [Modification for
BRLESC II, 9 October 1968*].

h. F. B. Hildebrand, "introduction to Numerical Analysis," (McGraw-
Hill Book Company, New York, 1956).

5. Listing of FORTRAN Subprogram Card Decks Available from Systems
Programming, Bldg. 328, Room 213, Aberdeen Proving Ground, Maryland,
25 July 1968*.

6. Lloyd W. Campbell, "BRLESC FORTRAN Changes," 30 June 1967*.

7. Lila Butler, "FORTRAN General and Polynomial Least Squares
Subroutines," 17 July 1968*.

8. Donald F. Taylor, "Function Minimizing FORTRAN Subroutines (On
Cards)," 27 March 1968*.

9« Donald Taylor and John Wortman, "A Function Minimizing Subroutine
Without Calculating Derivatives," January 1966*.

10. J. C. Torrey and John Wortman, "A Function Minimizing Routine,"
November 1965*.

11. John Wortman, "NLPROG (A Set of FORTRAN Programs to Find the
Minimum of a Constrained Function," Ballistic Research Laboratories
Memorandum Report No. 1958, January 1969»

12. Lloyd Campbell, "Least Squares Program with Formula Control Cards,"
June 1965*. (Amendment, August 1965*.)

13. Harold J. Breaux, Lloyd W. Campbell, and John C. Torrey, "Stepwise
Multiple Regression, Statistical Theory and Computer Program
Description," Ballistic Research Laboratories Report No. 1330,
July 1966. (See modification of Nov. 1967* also Reference !*»•).

U0

REFERENCES (Continued)

lU. Harold Breaux, Kenneth Breitbart, and Lloyd Campbell, "Prediction
Intervals for Estimates from Linear Regression Models,"
February I968*.

15. Lloyd Campbell, "Nonlinear Least Squares Program," December 1966*.

16. Clinton M. Frank and Ralph E. Shear, "Function Approximation by a
Polygonal Curve," Ballistic Research Laboratories Report No. 1363,
April 1967.

17. Palmer R. Schlegel, "The Cubic Spline - A Curve Fitting Procedure,"
Ballistic Research Laboratories Report No. 1253, July I96U.

18. Aivars Celmins, "Light Refraction by a Blast Bubble, (Appendix),"
Ballistic Research Laboratories Report No. 1360, March 19Ö7-

19. D. W. Marquardt, "An Algorithm for Least-Squares Estimation of
Nonlinear Parameters," J. Soc. Indust. and Appl. Math., II,
No. 2, (1963) U31-MH.

Unpublished report distributed in BRL. Copies are available from
Systems Programming, room 213 building 328. May be included in
Reference 2.

41

TABLE OF CONTENTS FOR APPENDIX

Page

INTRODUCTION hk

Standard FORTRAN Subroutines kk

DVD INT kh

MATINV i+5

FNEQS 45

GENLSQ k$

POLYLS k6

FNMIN k6

FDMIN kj

Standard FORAST Subroutines kj

D.D.IN kj

S.N.E., F.N.E., etc kö

G.L.SQ and P.L.SQ 50

FN.MIN 52

FD.MIN 53

Forast Programs 56

Least Squares Program (See Reference 12)

Multiple Regression (See Reference 13)

Nonlinear Least Squares 56

Piecewise Quartic Fit (No Description)

Cubic Spline (No Description)

Least Squares Cubic Spline 60

Polygonal Curve (No Description)

Other FORTRAN Routines 6l

Constrained Nonlinear Least Squares (No Description)

Nonlinear Least Squares For Correlated Data 62

NLPROG 66

h3

APPENDIX: INSTRUCTIONS FOR USING APPROXIMATION ROUTINES

INTRODUCTION

These descriptions are copied from various published and unpublished

sources. I wish to thank L. W. Campbell, CSD, for permission to use

material from his publications and other publications from Systems

Programming. I also thank Dr. A. Celmins, AMD, for the description

of his NONLINEAR LEAST SQUARES ROUTINE FOR CORRELATED DATA, and

Joe Hurff, EBL, for the description of LEAST SQUARES CUBIC SPLINE.

Standard FORTRAN Subroutines

These descriptions are taken from an unpublished Systems Programming

listing July 25, I968. Reference 11 of this report has a more detailed

description of GENLSQ and POLYLS.

LISTING OF FORTRAN SUBPROGRAM CARD DECKS AVAILABLE FROM
SYSTEMS PROGRAMMING,BLDG,328, RM 213, APG,MD.

KEY TO STAT. NO. FIELD,
(I) INDICATES INPUT ARG., CALLING PROG. SUPPLIES VALUE
(R) INDICATES RESULT. SUBPROGRAM STORES VALUE THERE.
(T) INDICATES TEMPORARY STORAGE.
(LR) INDICATES ARGUMENT USED AS INPUT AND RESULT.
(F) INDICATES ARG. USED AS A FUNCTION NAME.
(S) INDICATES ARG. USED AS A SUBROUTINE NAME.
(U) INDICATES ARG. WITH UNUSUAL USAGE.

IMPLIED TYPE OF DUMMY ARGUMENT INDICATES REQUIRED TYPE OF ACTUAL ARGUMENT,
EXCEPT WHERE NOTED OTHERWISE.

IMPORTANT BRLESC1 RESTRICTIONS-NO. OF DIMENSIONS MUST BE THE SAME
BETWEEN ACTUAL AND DUMMY ARGUMENTS.

DUMMY ARRAY ARG. CANNOT HAVE ACTUAL ARG.
THAT HAS SUBSCRIPT. (ACTUAL ARG. MUST
BE JUST ARRAY NAME WHEN DUM. ARG. IS
ARRAY.)

SUBROUTINE DVDINT(X,FX,XT,FT,NP,ND)
C DOES DIVIDED DIFFERENCE INTERPOLATION.
C (I) X IS ARGUMENT FOR WHICH FUNCTIONAL VALUE IS DESIRED.
C (R) FX IS NAME OF THE RESULT.
C (I) XT IS ARRAY OF X VALUES.(l DIMENSIONAL)
C (i) FT IS ARRAY OF FUNCTIONAL VALUES.(l DIMENSIONAL)
C (l) NP IS THE NUMBER OF VALUES IN XT AND FT ARRAYS.
C (I) ND IS THE NUMBER OF POINTS TO USE FOR EACH INTERPOLATION.

kk

SUBROUTINE MATINV(A,N,C,NMAX,K,DET)
C MATRIX INVERSION. A=A**(-l)
C(IR) A IS THE MATRIX AND IS REPLACED BY ITS INVERSE.
C (I) N IS THE DIMENSION OF THE MATRIX.
C (R) C IS USED ONLY WHEN K=l AS DESCRIBED BELOW.
C (I) NMAX IS THE MAX. NO. OF ROWS OF A AS DECLARED.
C (I) K DESCRIBES OPTIONS. K=0 MEANS AN N X N MATRIX.K=l MEANS
C AN N X N MATRIX AND A SINGLE VECTOR AT C.(THE SOLUTION
C VECTOR REPLACES THE C VECTOR). K>=2 MEANS AN N X (N+K-l)
C MATRIX. (THE (K-l) VECTORS ARE REPLACED BY THE (K-l)
C SOLUTION VECTORS).
C (R) DET IS THE VALUE OF THE MATRIX DETERMINANT.
C WHEN A IS SINGULAR, AN ERROR PRINT AND RETURN WITH THE
C VALUE OF DET SET TO ZERO IS EXECUTED.

SUBROUTINE FNEQS(A,N,C,NMAX,W)
C FORM NORMAL EQUATIONS (FULL N X (N+l) MATRIX).
C (R) A IS THE MATRIX OF NORMAL EQUATIONS BEING FORMED.
C A MUST BE CLEARED TO ZEROS BEFORE FIRST CALL OF FNEQS.
C (I) N IS THE NO. OF TERMS(EXCLUDING FUNCTIONAL VALUE).
C (I) C IS A VECTOR CONTAINING THE TERMS OF THE EQUATION INCLUDING
C THE FUNCTIONAL VALUE AS THE LAST TERM.
C (I) NMAX IS THE MAX. NO. OF ROWS OF A AS DECLARED.
C (I) W IS THE WEIGHT TO BE APPLIED TO THIS EQUATION.

SUBROUTINE GENLSQ(X,NRX,F,M,A,NRA,N,C,R,AF,ERMS,SIG,T,DET,IC)
C USES FNEQS AND MATINV SUBROUTINES.(MUST INCLUDE CARDS.)
C (I) X IS A MATRIX OF TERMS OF EQUATIONS.
C (i) NRX IS NUMBER OF ROWS IN X.
C (I) F IS A VECTOR OF FUNCTION VALUES FOR EQUATIONS.
C (I) M IS NUMBER OF EQUATIONS.
C (T) A IS A MATRIX OF AT LEAST (N)X(N+l),IS REPLACED BY INVERSE.
C (I) NRA IS NUMBER OF ROWS IN A.
C (i) N IS NUMBER OF TERMS NOT INCLUDING FUNCTION VALUE, N.LE.99.
C (R) C IS A VECTOR FOR N COEFFICIENTS.
C (R) R IS A VECTOR FOR M RESIDUALS.
C (R) AF IS A VECTOR FOR M APPROXIMATE FUNCTIONS.
C (R) ERMS IS THE ROOT MEAN SQUARE ERROR,EQUALS ZERO IF M.LE.N.
C (R) SIG IS A VECTOR FOR N SIGMAS.
C SIG IS INVERSE ELEMENT IF INV. ELEMENT IS NEGATIVE.
C (R) T IS A VECTOR FOR N T VALUES.
C (R) DET IS THE VALUE OF THE DETERMINANT.
C (I) IC IS THE CONTROL --
C IC IS 0 COMPUTE EVERYTHING.
C IC IS 1 COMPUTE ONLY COEFFICIENTS.
C IC IS 2 COMPUTE EVERYTHING EXCEPT RESIDUALS AND APPROXIMATIONS.
C IC IS 3 COMPUTE EVERYTHING EXCEPT APPROXIMATIONS.

1+5

SUBROUTINE POLYLS(X,F,M,A,NRA,N,C,R,AF,ERMS,SIG,T,DET,IC)
C USES FNEQS AND MATINV SUBROUTINES. (MUST INCLUDE CARDS.)
C (I) X IS A VECTOR OF INDEPENDENT VARIABLE.
C (i) F IS A VECTOR OF FUNCTION VALUES FOR POLYNOMIALS.
C (I) M IS NUMBER OF POLYNOMIALS
C (T) A IS THE MATRIX OF AT LEAST (N+l)X(N+2),IS REPLACED BY INVERSE
C (I) NRA IS NUMBER OF ROWS IN A
C (I) N IS DEGREE OF POLYNOMIAL, N.LE. 99
C (R) C IS VECTOR FOR (N+l)COEFFICIENTS
C (R) R IS VECTOR FOR M RESIDUALS
C (R) AF IS VECTOR FOR M APPROXIMATE FUNCTIONS
C (R) ERMS IS THE ROOT MEAN SQUARE ERROR,ZERO IF M.LE.N+1
C (R) SIG IS A VECTOR FOR N+l SIGMAS.
C SIG IS INVERSE ELEMENT IF INV. ELEMENT IS NEGATIVE.
C (R) T IS A VECTOR FOR N+l T VALUES.
C (R) DET IS THE VALUE OF THE DETERMINANT.
C (i) IC IS THE CONTROL—
C IC IS 0 COMPUTE EVERYTHING.
C IC IS 1 COMPUTE ONLY COEFFICIENTS.
C IC IS 2 COMPUTE EVERYTHING EXCEPT RESIDUALS AND APPROXIMATIONS.
C IC IS 3 COMPUTE EVERYTHING EXCEPT APPROXIMATIONS.

SUBROUTINE FNMIN(N,X,FX,FUN,E,EPS,K)
C FINDS MINIMUM OF A FUNCTION OF MORE THAN ONE VARIABLE.
C (I) N IS THE NUMBER OF VARIABLES. N<11 UNLESS CHANGE DIMENSION STATS.
C(IR) X IS A LINEAR ARRAY CONTAINING THE INITIAL ESTIMATES OF THE N
C VARIABLES AND AT RETURN CONTAIN THE VALUES AT THE MINIMUM.
C (R) FX IS WHERE THE FUNCTIONAL VALUE AT THE MINIMUM WILL BE STORED.
C (F) FUN IS THE NAME OF A FUNCTION OF 2 ARGUMENTS—FUN(X,N)—THAT
C COMPUTES THE VALUE OF THE FUNCTION AT X. (AN EXTERNAL
C STATEMENT IN THE CALLING PROGRAM IS NECESSARY).
C (I) E IS THE NAME OF A SCALAR WHICH IS USED TO DEFINE THE INITIAL
C TRIAL STEP AND THE INITIAL BOUND FOR THE CHANGE IN EACH
C VARIABLE. E>1. (DELX(l)) INITIAL=E*EPS(l) AND
C (DELX(I))MAX. INITIAL=20*(E*EPS(I)).
C (I) EPS IS A LINEAR ARRAY OF N EPSILONS DEFINING THE ACCURACY
C DESIRED IN EACH OF THE VARIABLES.
C(IR) K IF K=0 INITIALLY, AN ERROR PRINT AND HALT WILL BE
C EXECUTED WHENEVER CONVERGENCE WITHIN EPS HAS NOT BEEN
C ACHIEVED AFTER 20*N ITERATIONS.IF K IS NOT ZERO INITIALLY,
C RETURN IS EXECUTED UPON CONVERGENCE WITH K SET TO 1,
C OR AFTER 20*N ITERATIONS WITH K SET TO 2.

k6

SUBROUTINE FDMIN(N,X,DX,F,SUB,D,EPS,EPSI,K)
C FINDS MINIMUM OF A FUNCTION, USES DERIVATIVES.
C MUST BE FUNCTION OF MORE THAN ONE VARIABLE, I.E. N.GT.l.
C (i) N IS THE NUMBER OF INDEPENDENT VARIABLES IN THE FUNCTION TO
C BE MINIMIZED.N<L1 UNLESS DIMENSION STATEMENTS ARE MODIFIED.
C(IR) X IS THE LINEAR ARRAY OF VARIABLES.INITIALLY CONTAIN THE
C ESTIMATES OF THE VALUES AT THE MINIMUM.AT RETURN
C CONTAIN THE FINAL VALUES.
C (T) DX IS A LINEAR ARRAY CONTAINING THE VALUES OF THE N PARTIAL
C DERIVATIVES OF THE FUNCTION EVALUATED AT X BY THE SUB
C FROGRAM.NO INITIAL VALUES REQUIRED.
C (R) F CONTAINS THE VALUE OF THE FUNCTION AT RETURN.
C (S) SUB IS THE NAME OF A SUBR0UTINE--SUB(N,X,F,DX)--THAT COMPUTES
C THE FUNCTIONAL VALUE (F) AND DERIVATIVES (DX).
C (I) D IS AN ESTIMATE OF THE IMPROVEMENT IN THE VALUE OF THE FUNCTION.
C WHEN D=Q, ROUTINE ASSUMES THE MIN. VALUE IS NEAR 0.
C (I) EPS IS THE ACCURACY DESIRED IN THE FUNCTION VALUE.
C (I) EPSI IS A CONDITION ON THE INDEPENDENT VARIABLES.
C ABS(DELTAX(l))/ABS(X(l))<EPSI.IGNORED IF EPSI VALUE=0.
C(IR) K IF K IS INITIALLY ZERO, AN ERROR PRINT AND STOP WILL BE
C EXECUTED WHEN FUNCTION IS NOT CONVERGING.IF K IS NOT ZERO
C INITIALLY,RETURN IS EXECUTED WITH K SET TO 1 WHEN
C CONVERGENCE IS SATISFIED OR K SET TO 2 WHEN THERE IS NOT
C CONVERGENCE.

Standard FORAST Subroutines

Most of these descriptions are taken from BRL Report No. 1275,

The FORAST Programming Language for ORDVAC and BRLESC (Revised), by

L. W. Campbell and G. A. Beck, March I965. The descriptions of FN.MIN

and FD.MIN are unpublished documents available from Systems Programming.

D.D.IN)X)FX)Xo)Fo)tpt)n)ix) X is the address of the argument.

is the address of the result,

is the initial address of the

table of Xi's.

is the initial address of the

table of Fi's.

tpt is the number of entries in

the table, (no. of Xi's)

is the number of points to use

in the interpolation,

is the distance between entries

^7

if)# FX

(Divided Difference Inter- Xo

polation)

Must use all three Fo

optional arguments or

none. If omitted, tp

(5)1)1) is used.

D.D.SX)Fo)FX)$ n

Use this to interpolate

more functions using the ix

same value of X. (must

use ENTER).

in the X table

if is the distance between entries

in the F table.

The following matrix manipulation routines are available:

S.N.E)Al,l)n)Co)DET$

MAT.INV.)Al,l)n)Co)DET$

To omit the use of

Co and use DET it is

necessary to write

Al,l)n))DET)

SY.SNE)Al,l)n)Co)DET$

SY.INV)Al,l)n)Co)DET$

F.N.E.)Al,l)n)Cl)w£

F.O.MAT)Al,l)n)#

MAT.M)Al,l)Bl,l)Cl,l)i)

J)k)*

Al,l: Bl,l: Cl,l are addresses

of the first elements of matrices.

n is the number of unknowns (rows).

Co is the address of the first

element of the solution.

DET is the address of the determinant.

Cl is the address of the first

CAP coefficient of the given equation.

W is the address at weights for the

equation,

i is the number of rows in A(or AT).

j is the number of cols, in

A(or AT) and is equal to the

no. of rows in B(or B^).

k is the number of columns in

B(or BT).

Additional comments on the above matrix subroutines: The S.N.E.

(Solve normal equations) assumes all elements of a matrix having n rows

and n + 1 columns are stored in the memory by rows. The SY.SNE

(symmetric solve normal equations) assumes that only the upper triangle

of an n x n + 1 matrix is stored and SY.INV (symmetric inversion)

assumes that only the upper triangle of an n x n matrix is stored.

S.N.E.; MAT.INV; SY.SNE; and SY.INV all replace the original matrix

with its inverse. The SY.SNE stores the solution vector only at Co.

The F.N.E. (form normal equations) assumes that the upper triangular

augmented matrix has been cleared by the program before it is entered

with the first equation. The F.N.E. produces a matrix that can be

solved with the SY.SNE. The F.O. MAT (fill out matrix) will take an

k&

augmented upper triangular matrix (as generated by F.N.E.) and replace

it with an augmented square matrix (as needed by S.N.E.).

The S.N.E. will attempt to rearrange rows of the matrix when it

finds a zero diagonal element while it is computing the inverse. The

row rearrangement does not affect the arrangement of the solution vector,

however the inverse matrix will not be correct if any rows were actually

rearranged. Rearrangement can be avoided by use of the "not" option

as explained below.

Additional BRLESC S.N.E. options:

S.N.E.)Al,l)n)Co)DET)drow)dcol)Bl)db)dc)ZERO)not)$

If "drow" is specified, it is the spacing between rows; i.e. the

address A2,l - address Al,l.

If "dcol" is specified, it is the spacing between columns (which

is the same as spacing between elements within a row).

If Bl is specified, the n positions beginning at Bl are used as

the column vector instead of the (n+l) column of the matrix.

If "db" is specified, it is the spacing between the elements of

the column vector.

If "dc" is specified, it is the spacing between elements of the

solution vector.

If ZERO is specified, it is the address of the number which will be

used to check for zero diagonal elements. Those diagonal elements whose

absolute value are less than ZERO will be considered as zero for the

rearrangement test.

If "not" is any address different from zero, the S.N.E. will not

rearrange any rows.

When any or all of these spacing options are omitted (or zero),

the normal consecutive spacing of elements is assumed.

^9

For M/VT.INV "drow", "dcol", ZERO, and "not" may be specified

when needed and have the same meaning as for the S.N.E. except "not"

has the opposite meaning. MAT.INV does not normally rearrange any

rosw and will do so only when "not" is specified as non-zero.

Note that when optional addresses are omitted any place except at

the end of an ENTER statement, the right parenthesis must still be

written for each omitted address. In particular, the above options for

the MAT.INV subroutine must correspond to the same position on the list

of addresses as used by the S.N.E. since they are just different

entrance points to the same subroutine.

G.L.SQ

or

P.L.SQ)X)ix)F)if)m)Al,l)n)C)R)ir)AF)iaf)ERMS)SIG)T)DET)w)iw)EqSEQ)TSEQ %

(General or polynomial least squares data fitting.)

X For G.L.SQ, X is the location of the first term of the first

equation. Terms must be stored consecutively.

For P.L.SQ, X is the first independent variable,

ix For G.L.SQ, ix is the distance from one equation to the next

one. For P.L.SQ, ix is the distance from one independent

variable X to the next one.

F is the function value for the first equation or polynomial,

if is the distance between function values,

m is the actual total number of equations or "points" that are

to be used in computing the fit. (it must not include those

skipped by using EQSEQ.)

Al,l is a block of storage that must be large enough for an

augmented (n x n) symmetric matrix,

n For G.L.SQ, n is the actual number of terms to be used in

each equation, (it must not include those skipped by using

TSEQ.) For P.L.SQ, n is one less than the number of terms

and is the degree of the polynomial when all the terms are

used.

C is the initial address for consecutively storing the n

coefficients, (if n 2: 38, n + 1 spaces must be allowed at C.)

50

R is the initial address for storing the m residuals,

ir is the distance desired between residuals, i.e. the

increment for the R address.

AF is the initial address for storing the m approximate function

value s.

iaf is the increment for the AF address.

ERMS is the store address for the root-mean-square error. Zero is

stored when m ^ n or when) W. ^ n.

SIG is the initial address for consecutively storing the n "sigmas".

SIG. = ERMS * SQRT(inv.el.A. .)
l x 1,1

(if the inverse element A. . is negative, it is stored for

SIG. and T. =0.)
l l

T is the initial address for consecutively storing the n "t's".

T. = C./SIG.
l i' l

DET is the address to store the determinant.

W is the initial address of the weights to be used.

iw is the increment for the W address.

EQSEQ is the initial address of a consecutive sequence of numbers

that have a one to one correspondence with each equation

(or point) stored at X. A zero number indicates that the

corresponding equation (or point) is to be used and a non-zero

number indicates that it should not be used. Note that

this sequence, if used, must contain m zero numbers.

TSEQ, is the initial address of a consecutive sequence of numbers

that have a one to one correspondence with the terms in each

general equation or with the powers of X in a polynomial. A

zero number indicates that the corresponding term or power

of X should be used and a non-zero number indicates that it

should not be used. Note that this sequence, if used,

must contain n zero numbers.

51

A FUNCTION MINIMIZING SUBROUTINE WITHOUT CALCULATING DERIVATIVES

Donald Taylor and John Wortman Jan 1966

The subroutine will find the minimum of a function f(X,....X). It
1 n

requires that the programmer provide for the evaluations of the function.
(At present, available on BRLESC only)•

The entrance sequence is as follows:

ENTER(FN.MIN)n)X)F)EVF)E)H)EPS)ERR)

n is the number of independent variables in the function to
be minimized.

X, is the address of the first of n consecutive positions for
the independent variables. Initially, these positions
should contain estimates of the values at the minimum;
upon exit from the subroutine, they contain the final
values of the independent variables.

F is the address of the value of the function.

EVF is the address of the Programmer's function evaluation.
It must use XX as the values of the independent

variables and store the resulting function value at F.
Use the name (FN.RET) to return to the subroutine.

E is the address of a number which is used to define the
initial trial step and the initial bound for the change
in each independent variable. Normally, E > 1.

(AX)initial = E x EFS± (AX^max.initial = 20(E x EPS^

H, is the address of the first of n + kn consecutive 1
positions used for temporary storage. (Direction
matrix, etc.)

EPS, is the address of the first of n consecutive positions
which should contain the accuracy desired in each of the
independent variables.

ERR OPTIONAL. The subroutine will send control to this
address (instead of producing an ERROR print) if, after
20n iterations, the requested accuracy has not been
satisfied.

52

It is possible to maximize a function f by minimizing the function
-f. In least squares fitting, the subroutine has been used
successfully to fit some non-linear functions for which 'differential
corrections' did not work well. In this case, the function to minimize
is the sum of the squares of the residuals.

The subroutine is derived from a method described by M.J.D.Powell.
It is a variation of the well known method of minimizing a function of
several variables by changing one parameter at a time.

The method does not recognize constraints on the variables.
Sometimes, it may be possible to apply some constraints within the
function evaluation program by assigning some relatively large value to
the function whenever the constraint has been violated. There is,
however, no assurance that this will succeed.

The error print when the number of iterations exceeds 20 n (unless
bypassed by the option) is ITER.>20xN and the number printed is the
minimum value of the function at this point.

It is suggested that several sets of initial values of the
independent variables should be tried to see that they converge to the
same minimum to give some assurance to the result. The subroutine does
not do this.

A FUNCTION MINIMIZING SUBROUTINE (WITH DERIVATIVES)

J.C. Torrey and John Wortman November 1965

This subroutine will find the minimum of a function f(x,...x). v 1 n'
The routine is called FD.MIN to emphasize that the programmer must
provide evaluations for the partial derivatives of his function as well
as for the function value. At present it is available only on BRLESC.

The entrance sequence is as follows:

ENTER(FD.MIN)n)Xl)EVE)D)EPS)Hl)F)EPSl)^, where

n is the number of independent variables in the function
to be minimized.

M.J.D.Powell; An Efficient Method for Finding the Minimum of a Function
of Several Variables Without Calculating Derivatives. The Computer
Journal, Vol. 7, No. 2, July, I96U.

53

XI is the address of the first of n consecutive positions
for the independent variables. Initially, these positions
should contain the programmer's estimates of the values
at the minimum; when the routine is finished, they hold
the final values of the independent variables.

EVF is the address of the programmer's function and derivative
evaluation. Return from EVF to the routine is done by
GOTO(FD.RET)#.

D is the address of an estimate of the improvement in the
value of the function. This estimate will not be
critical except in cases where the routine is to
distinguish between local minima. (Option: When D = 0,
the routine assumes that the function's minimum value is
near zero and £ zero.)

EPS is the address of the accuracy desired in the function
value.

p
HI is the address of the first of n + 9*1 consecutive

positions, used for temporary storage.

F is the address of the first of n+1 positions for the
value of the function and its n partial derivatives.
(Note that the function is stored at F, with derivatives
following in the same order as the corresponding
variables at XI.)

EPS1 (optional) is the address of a cauchy-like condition on
the independent variables. At the last routine iteration,

< EPS1, 1=1...n

The programmer will use the EPS1 option when his interest is in the
values of his variables at the minimum, rather than the function itself.

Note that FD.MIN can be used to maximize a function. To maximize
f, minimize -f.

The routine has been used successfully in least squares fitting
that would normally be done by differential corrections. To do this,
the function to minimize is the sum of the squares of the residuals.
The value of D at entrance should be zero.

5U

FD.MIN, derived from a routine described by Davidon ; uses a
variable n x n matrix M as a metric in searching for the best values of
the X.. The programmer desiring to impose constraints on his variables,

or to use information about them to speed the search, should modify M
the first (but only the first) time the routine enters his function

2
evaluation. M is stored in the first n positions of the block HI, and
is set to the unit matrix at the start by the subroutine.

Setting the diagonal elements of M to the squares of the estimated
error in the initial values of the variables may effect a substantial
increase in the speed of minimization. Thus, if X- = Ik ± h, then

nu = 16; but if X = ll+ ± .1, then nL = .01.

If the programmer desires to impose linear constraints on his
variables, he modifies the matrix at the first function evaluation.
For the constraints

I aiXi = kl '

y b.x.
L> 1 1

kp , etc.,

he must choose M so that

Za.m. . = 0

) b.m. . = 0 , etc.,
L. 1 IJ ' '

and initial values of the X. to satisfy the constraints.
1 J

The subroutine has an error exit which prints 'FDMIN DOWN' for its
error number. A faulty derivative evaluation is the most likely cause
of error, but the programmer should assure himself that his function has
a minimum.

Finding a minimum of a general function is an uncertain process.
Davidon suggests converging to the minimum several times from varying
initial values before accepting it. FD.MIN does not do this, but its
users may add assurance to their results by following his lead.

William C. Davidon, "Variable Metric Method for Minimization",
ANL-5990, Physics and Mathematics (TID-I15OO, l4th ed.) AEC R&D Report.

55

FQRAST Programs

The LEAST SQUARES PROGRAM has been extended considerably since its

original description and amendment (Reference 12) were written in 1965.

This program is still available, but the Computer Support Division

recommends using the MULTIPLE REGRESSION program instead.

The description of the MULTIPLE REGRESSION program (Reference 15)

is much to bulky to include here. The description of the NONLINEAR

LEAST SQUARES PROGRAM is included. This description refers to Reference

15.

FORTRAN programs and descriptions for both MULTIPLE REGRESSION and

NONLINEAR LEAST SQUARES will be available by the time this report is

published.

The LEAST SQUARES CUBIC SPLINE is the only other description

available at this time for programs in this section.

The PIECEWISE QUARTIC FIT, and the CUBIC SPLINE have been used by

various members of the Firing Tables Branch of EBL. They may now have

programs and instructions for them as they have for the LEAST SQUARES

CUBIC SPLINE.

NONLINEAR LEAST SQUARES PROGRAM

L. Campbell December 1966

The multiple regression computer program (as described in BRL
Report No. 1550) has been used as a basis for developing a new general
purpose non-linear least squares program for BRLESC. Except for the
exceptions noted here, the rules for using this program are the same as
for the regression program.

For the non-linear least squares, the expression that is to be
used to fit the observed data must be included as a redefinition
formula except it must be called F. The right side of this formula
must be inclosed in parentheses if it has + signs between "terms".

56

For example:

F = (A + EXP(A1*V1)) ,

where A,A1,...,A2U must be used to refer to the coefficients that are to
be determined from initial approximations to these coefficients. (A and
Ao both refer to the first coefficient.)

5F 3F
The partial derivatives ^r- , ^ry , must also be defined by-

redefinition formulas and they may be called P,P1,P2,... (or R's may be
used if R's are also used in the main formula). For example, the partial
derivatives of the above F expression would be written as:

P = 1, PI = VI * EXP(Al*Vl) ,

The main formula must define a residual as the sum of all the
partial derivatives, so on the left of the = symbol should be "some
V(or R) - F" and on the right, each i-th term is the name used for the
partial derivative with respect to the i-th coefficient. The main
formula for the above example and using Vh as the observed value of the
function would be

ylt- - F = P + Pl#

Following the main formula must be one or more lines of initial
estimates for the coefficients punched in 10 column fields with eight
per line. They should be punched with decimal points and may have
exponents.

Following the coefficient estimates must be epsilons for testing
convergence of the coefficients. Each coefficient must have its own
epsilon and they are to be punched in 10 column fields with eight
per line and may have decimal points and exponents.

The data, with optional header lines, follows and it must be
followed with 2 blank lines. Data may be on tape or cards or previous
data may be used by using just 2 blank lines, just like the regression
program. The initial value of AH is 1 in this program too, so a single
header card is expected to precede the data. The amount of data
allowed on tape is unlimited, the amount of data allowed on cards is
limited to the BRLESC memory capacity - 9000 approximately.

The program limits the number of iterations to 20 unless an
"MI = i" control card is used where i is a new maximum number of
iterations. When convergence is not reached within this maximum
number of iterations, the program prints "DIDN'T CONVERGE IN i
ITERATIONS." and will not print any residuals, sigmas or t's.

57

An "USE DELTA* p" control card may be used to cause each change in
the coefficients to be less (or more) than what the program computes.
Using p < 1 may allow convergence when p = 1 (its normal value) will
cause divergence. (p > 1 should not be used.) Each computed change in
each coefficient is multiplied by p before it is used to actually change
the coefficient for the next iteration.

There is no rescaling in this non-linear program. All residuals
and approximate functions printed will be in their redefined scale.

The output includes for each iteration, the current root-mean-
square error, the maximum residual, the coefficients before being
changed, the "delta" or amount of change for each coefficient and the
new coefficients.

After convergence, the program normally prints all the approximate
values of the function and residuals, the same as the regression program
except there is no rescaling. The final root-mean-square error and
maximum residual is printed and the "sigmas" and "t's".

The following control cards may be used and have the same meaning
as in the regression program.

FR.RES.>= CARD INPUT
NO RESIDUALS TAPE INPUT
RESIDUALS TAPE MF TO
STOP ERMS= TAPE MFMF
ANGLES ARE IN MILS SAME FORMULAS
ANGLES ARE IN DEGREES
ANGLES ARE IN RADIANS
VW=
VN=
V.=
IDE
AH=

New Control Cards:

MI= i where i is maximum no. of iterations
allowed, (i = 20 initially.)

USE DELTA* p where p is multiplied times actual computed
coefficient "deltas" before actually computing
new coefficients.

58

Input Sequence:

Control Cards
Re-definition formulas (must include F = formula) „,,„ ___,_TTnr,

/ _ or SAME FORMULAS
Main formula (Observed Function - F = Partial

derivatives.)

Initial Coefficient Estimates (10 column fields)

Epsilons for convergence for each coeff. (10 column fields.)

Heater cards, if AH ^ 0 Omit to re-use same data.
Data Data may be on tape or cards
2 blanks

(May repeat above sequence any number of times.)

Output Sequence:

Header lines, if any.
First 12 data numbers.
Two lines of program parameters.
All formulas.
blank line

Current ERMS and Max. Residual
Initial Coefficients
Computed changes of coefficients repeated for each
If p / 1, actual changes of coefficients iteration.
New coefficients
blank line

Approximate function and Residuals

or

Data line no., original function, and residual.

Final ERMS and final Max. Residual

Sigmas

t's (If t = 0, then corresponding sigma is negative diag. matrix
element.)

(Next output sequence will start on a new page.)

59

PROGRAM

PROGRAMMER

DATE

LANGUAGE

DESCRIPTION

CUBIC SPLINE LEAST SQUARE

JOE HURFF

MAY 1969

FORAST

FOR GIVEN DATA SETS, THIS PROGRAM YIELDS AN APPROXIMATING
FUNCTION IN THE FORM OF A SERIES OF CUBIC POLYNOMIALS.
THE FUNCTIONS ARE DERIVED BY USING BOTH THE PRINCIPLE OF
LINEAR LEAST SQUARES AND CUBIC SPLINE FITTING. THIS
PROCESS MAY USUALLY BE USED SUCCESSFULLY FOR SMOOTHING
AND PROVIDING FIRST AND SECOND DERIVATIVES.

PROCEDURE

I DATA CARDS (12 DIGIT FLOATING POINT) THERE MAY BE A
MAXIMUM OF 500 DATA POINTS

1. CARD SET-UP

COLS
1-12 X

15-21* F (Xz)

25-80 BLANK

2. BREAK POINTS (12 DIGIT FLOATING POINT) ONE OR TWO
CARDS

COLS CARD 1 CARD 2

1-12 *o *6
13 -2k

*1 h
25-36

\
X8

37 -k8 s s
1*9-60 h X10

61-72 xc s *

If there are fewer than 10 break points, the S must follow in field
immediately after the last one.

60

TIME

OUTPUT

II HEADER CARDS (NONE)

III CONTROL CARD (12 DIGIT FLOATING POINT)

COLS
1-12 F«(XQ)

15-2U F'CXJJ)

73-75 3 DIGIT CODE - USER'S OPTION

(0 - FIT F' (X) EXACTLY

76 <1 - CONSTANT F''(X) OVER FIRST INTERVAL
[2 - FIT F(XQ) EXACTLY

[O - FIT F' (Xjj) EXACTLY

77 ^1 - CONSTANT F''(X) OVER THE LAST INTERVAL
[2 - FIT F(XN) EXACTLY

78-80 3 DIGIT CODE - USER'S OPTION

IV ORDER OF INPUT

1. CONTROL CARD

2. BREAK POINT CARDS

3. DATA CARDS

k. BLANK

5. PROB CARD

APPROXIMATELY ONE HALF MINUTE PER CASE

THE OUTPUT IS COMPLETELY LABELED

Other FORTRAN Routines

No description of the Share program we called CONSTRAINED NONLINEAR

LEAST SQUARES is given. Dr. Celmins kindly prepared a description of

the NONLINEAR LEAST SQUARES FOR CORRELATED DATA routine. The

description of NLPRCG was taken from BRL Memorandum report No. I958.

61

NON-LINEAR LEAST SQUARES SUBROUTINES FOR
CORRELATED IJATA (COLSA, COLSB)

A. Celmins December 1968

Reference: (l8) BRL Report 1360 (March 1967), Appendix

Problem Outline

A general least squares problem can be formulated as follows: We
have observed r sets of n quantities x,,...,x . Between these

quantities a functional relationship which depends on m unknown
parameters y ,...,y is assumed:

F(x1, ; yn,--.,ym) = 0 (1)

If r > m, we compute the parameters and some corrections of the
observations such that Equation (l) is satisfied at all r observation
sets and the sum of correction squares is a minimum. For this
computation the correction squares should be weighted differently
depending on their accuracies and on correlations between them.

The subroutine COLSA computes the values of the parameters y.,
J

their accuracies, and their cofactor matrix (i.e. variance-co-variance
matrix) from the following data: Observations, standard errors of the
observations, a cofactor matrix for each observation set, and approximate
values of the parameters. Correlations between observations belonging
to different sets are not considered.

The subroutine COLSB may be called after the final values of the
parameters are established. It computes the corrections (probable
errors) of the observations, prints and plots error distributions,
prints identifications of sets with large corrections and carries out
some numerical controls of the computations.

Sample Problem

The relationship between x and x? may be linear:

F(xx, x2 ; yi>yg) = xi cos yi + x2 sin yi " y2 = °

62

The observed points (x ,xp) may have different accuracies and

there may be some correlation between the coordinates observed so that
the error ellipses of the points observed have different sizes and
directions. (Such correlations can be caused by the observation
technique, for instance.) COLSA will assign different weights to the
points in accordance with their error ellipses. The resulting parameters
y and y will be furnished together with their standard errors and

cofactor matrix. (y, and yp are correlated because both are computed

using the same data.)

Data for COLSA and COLSB

All data are assumed to be in the core memory. The dimensions of
the corresponding arrays are as follows:

Observations: X(5,1000) - n ^ 5; r < 1000

Standard errors of unit weight: ERZX(lOOO) - r s 1000

Cofactor matrices: RC0R(5,5,1000) - n ^ 5; r £ 1000

Approximations of parameters: YCAP(lO) - m ^ 10

Alphanumeric identifications of observed sets, consisting of
two 10-letter words for each set: IDEN (lOOO)

TIFIC (1000) - r < 1000

63

In addition to the data, a subroutine, say FU, to evaluate the
function F(x,,... ,x ; y,,...,y) is needed. The routine must furnish

1' ' n 1 m
the value of F as well as the n + m values of the first partial
derivatives SF/öx and dF/äy. The calling of COLSA and COLSB is
described below.

Calling COLSA

CALL C0LSA(N,MJFU,YCAP,YMW,ERY,FJlSER0,Q,M,X,EISX,RCOR,OT0T,ETAJIDENJ
TIFIC)

In the following list, I = input argument provided by calling
routine and R = result set by COLSA.

I-N = number of observations in each set (N ^ 5)

I-M = number of parameters (M ^ 10)

I-FU = name of subroutine for F(x,y)

I-YCAP = approximate values of the parameters. Dimension: YCAP(lO)

R-YLOW = YCAP + ETA = improved parameter values. Dimension: YLOW(lO)

R-ERY = standard errors of YLOW. Dimension: ERY(lO)

R-ERZERO = standard error of weight one (associated with cofactor
matrix Q,)

R-Q = cofactor matrix of YLÖW. Dimension: Q(l0,10)

I-NR = number of sets observed (NR ^ 1000)

I-X = observations. Dimension: X(5,1000)

I-ERZX = standard error associated with each set. Dimension: ERZX(lOOO)

I-RCOR = cofactor matrices of observation sets. Dimension: RCOR(5,5,1000)

R-NTOT = number of valid observation sets. Normally NT0T=NR; see
description of FU - subroutine.

R-ETA = corrections of YCAP. Dimension: ETA(10)

I-IDEN _ alphanumeric identifications of observation sets.
I-TIFIC " Dimension: IDEN(lOOO), TIFIC(lOOO)

The results of COLSA are printed in a self-explaining way. The
following symbols are used by the routines for printouts:

6k

X = observations

X + KSI = corrected observations

Y = approximations of parameters

Y + ETA = corrected parameters

G = weight of observation set

F(X,Y + ETA) = constraint function with corresponding
arguments (Equation (l)).

There is no checking by COLSA whether N or M exceeds 5 or 10*
respectively. Also, the value of NR is not checked to see if it
satisfies M < NR £ 1000.

Programming F(x,y)

The constraint function is entered by COLSA and COLSB as follows
CALL FU(X,Y,FVA,A,B,L,NMES) where

I-X = observations. Dimension: X(5*1000)

I-Y = parameter vector. Dimension: Y(lO)

R-FVA = F(x1,...,xn i yv...ym)

R-A = SF/dx. Dimension: A(5)

R-B = SF/öy. Dimension: B(lO)

I-L = number of set. The arguments xn.....x are:
1 n

x± = X(1,L), x2 = X(2,L),.o.,xn = X(N,L)

R-NMES = error message indicator. NMES = 1 if the function or
its derivatives cannot be computed with the
arguments given. If this happens, COLSA will print
a comment and the identification of the corresponding
set and reduce the total number of valid sets,
NTOT by one.

Calling COLSB

CALL COLSBCN^M^FU^YCAP^YLOW^ERY^ERZERO^Q^NR^X^ERZX^RCOR^ETA^IDEN^TIFIC)

The arguments of COLSB are the same as those of COLSA, except NTOT
is not an argument of COLSB. In contrast to COLSA, all COLSB arguments
are of input type. Normally they will have the values furnished by the

65

last call of COLSA. All output of COLSB is on the printer (in
self-explaining manner) and plotter tape. The plotted information
includes the frequency distribution, cumulative histogram and probit
diagram of the weights of F(X,Y + ETA). For comparison the corresponding
number distributions and normal distributions are included. The printed
information includes lists of sets with large errors, surveys about the
corrections and their distributions and some numerical tests for
accuracy and randomness.

Subroutines Used

The following names are names of subroutines used by COLSA and
COLSB.

CHOLES - cholesky algorithm routine for solving normal equations
PLOCOB - plotting routine used by COLSB

PLODIS
FREDIS
CUMMIS subroutines used by PLOCOB
PRODIA
PROBIT

ERF(X) - function routine furnishing normal distribution
function (error integral)

PLTCCA
PLTCCT
PLTCCD plotter subroutines.
PLTCCS
PLTCCB

NLPROG (Taken from BRL Memorandum Report No. 1958)

In this section instructions to use the NLPROG programs will be
given. These instructions will usually be given as if POWELL were the
minimizing method. The necessary modification for the other minimizing
subroutines will be noted.

The problem we wish to solve is: Minimize

\T
F(X) X = (x1,x2,...,xN)-

subject to

R.(X) s 0 1=1,2,..., NIC

66

and

R.(X) =0 i=NIC+l, NIC+2,...,NC.

NLPROG actually tries to minimize the function

r-,NEC 1 rnNC
P(X,pk) = F(X) + pk^=1 1/R.(X) + (l/p/) ^.=NIC+1 R.(X)

NEC
for pR = pv p2 = P-L/RATIO, p3 = p^RATIO,... until PL 2J_=1 l/R±(X) < 9.

NLPROG is really a set of subroutines the names of which should be
avoided in other programming. A list of the subroutine names used in
NLEROG with POWELL follows. The brief explanation with them assumes
that X and the previous X used both satisfy all the inequality constraints.

NLPROG - This subroutine is the main routine for this
collection of subroutines.

SUBPRO - A buffer between NLPROG and the minimizing subroutine.

POWELL - Minimizing method.

LINMIN - Univariate minimization scheme: find S for which
P(XI+S«V,p) is a minimum (or improved
sufficiently). This uses POFS to evaluate P.

POFS - Finds X = XI + S-V and uses POFX to find P(X,p).
This also keeps track of the X which minimizes
P(X,p), say XMIN, and the functions of XMIN;
R.(XMIN) (i=l,2,...,NC), P(XMIN,p), G(XMIN,p) and

F(XMIN). If X is not in the accepted region

P(X,p) is set to 1015°.

POFX - Controls computation of R.(X) (i=l,2,...,NC);
F(X), P(X,p), and x

rnNIC

Li ^v G(X,p) = P(X,p) -2p ^ 1/R.(X).

OUTPUT - Prints F(XMIN), P(XMIN,p), G(XMIN,p), p, (P-G)/2,
XMIN, and R.(XMIN) (j=l,2,...,NC).

J

In addition, the user must code a subroutine, EVAL(l), which puts F(X)
I >

67

in F if I = 0 and R,(X) in R(l) if I > 0. If we use HOOKE instead of

POWELL, LINMIN is dropped from the package. If FLETCH is used in place
of POWELL the subroutine DPBYDX is added and the coder must add the
subroutine DERIV(l) where if I = 0, DRDX(j) = dF(X)/dx. (j=l,2,...,N)

and if I > 0, DRDX(j) = 9R (X)/dx. (j=l,2,...,N). If NEWTON is used

in place of POWELL, the DERIV(l) subroutine must also compute second

derivatives: If I = 0, DDR(j,k) = 52F(X)/dx .öX (J=1,2,...,N;
P 3 k

k=l,2,...,N). If I > 0, DDR(j,k) = öTR];(X)/9x .dx^ (j=l,2,...,N;

k=l,2,...,N).

The original plan was to code up different minimization schemes
and change only SUBPRO to use them. Actually the main control
subroutine NLPROG is slightly different for each of the four
minimization schemes and the LINMIN for POWELL is different than that
used with FLETCH and NEWTON.

Blank COMMON is used to identify all the numbers which are used,
supplied, or needed by the MAIN program, EVAL(l), or DERIV(l). One
labeled COMMON, called SUB, is used by NLPROG. The blank common list
for NEWTON is (N,NC,NIC,X(lOO),EPS(l00),Q(l00),RH0,RATIO,THETA,NREFET,
NRH0RP,F,R(200),IPR0P,DRDX(100),DDR(100,100)).

N - number of variables. N ^ 100.

NC - number of constraints. 0 ^ NC ^ 200.

NIC - number of inequality constraints. NIC < NC s 200.

X(lOO) - variables. An initial guess must be put here. The
current value of X is here at other times.

EPS(lOO) - acceptable absolute error in variables. NLPROG
may not attain this accuracy. It does check
that a change of EPS(i) in any one x(i) will not
reduce the final P(X,p). EPS(i) > 0.

Q(lOO) - initial search steps (not too critical). The
approximate errors in the initial x. are
recommended.

RHO - p. control parameter, p > 0.

RATIO - p. = p./RATIO. RATIO > 1 (Recommend

k s RATIO S 16.)

THETA - 9. final convergence parameter.

NREPET - number of times to repeat minimization. (Optional)

68

NRHORP - number of p's to repeat for each repetition of
minimization. If pT is the value of p when

Li

p / . l/R.(X) < 9 the minimization is restarted

with p = p_. RATIO(NRHQRp-1). The purpose of
Li

this is to push the X which satisfies P(X,p) away
from the boundary of the region {X|R.(X) > 0,

i=l,2,...,NIC}. However if there are no
inequality constraints, only equality constraints,
a negative or zero NRHORP would reduce p and force
closer satisfaction of the equality constraints.

F - function to be minimized.

R(200) - constraints. (The NIC inequality constraints must
be stored first.)

IPROP - controls use of OUTPUT.
0 - no prints (except errors)
1 - print initial values and the solution of each

subproblem.
2 - Print each cycle result
5 - Print each linear minimum. (IPROP = 1 is

recommended. This gives a fair outline of
the course of the problem.)

DRDX(lOO)- Partial derivatives of F or R_ with respect to x.
I l

(This array is not needed for POWELL or HOOKE.)

DDR(100,100)- Second partial derivatives of F or R with respect

to x. and x.. This matrix is symmetric but must

be completely filled by DERIV(l) (This array is
needed only if NEWTON is used.)

The quantities starting with N or I are integers. The rest are
floating point numbers. This set of blank COMMON must precede the users
programs.

Before calling NLPROG, the user must store N, NC, NIC, and initial
values of X(l), W(l), and EPS(l) (l=l,2,...,N). He must also store
RHO, RATIO, THETA, IPROP, and if desired, NREPET and NRHORP. He must
supply the subroutine EVAL(l) and, if FLETCH or NEWTON are used, the
user must also supply the appropriate DERIV(l) subroutine.

69

When NLPROG returns control to the main program, X(l) 1=1.2,...,N
contains the solution X, RHO has the final value of p, F = F(XJ, and
R(j) = RT(X) J=l,2,...,NC. The numbers in N,NC,NIC,EPS(l),RATIO,THETA,

NRHORP, and IPROP are not changed by NLPROG.

Comments

The need for some preliminary analysis of minimization problems
cannot be overstressed. All too frequently we mechanically prepare a
program and discover, while trying to code check the program, that there
is an obvious solution; or worse that there is no finite solution.
Further, the preliminary analysis should help select reasonable starting
values. If the initial X does not satisfy the inequality constraints
NLPROG will search for an X that does. However, this X may be so remote
from the desired solution that the program will take a long time to
reach the solution.

TO

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization

20 Commander 1 Commanding General
Defense Documentation Center U. S. Army Tank-Automotive
ATTN: TIPCR Command
Cameron Station ATTN: AMSTA-CL
Alexandria, Virginia 22314 Warren, Michigan 48090

Commanding General 2
U. S. Army Materiel Command
ATTN: AMCDL
Washington, D. C. 20315

Commanding General
U. S. Army Materiel Command
ATTN: AMCRD,Dr.J.V.R.Kaufman 1
Washington, D. C. 20315

Commanding General
U. S. Army Materiel Command
ATTN: AMCRD-TE 1
Washington, D. C. 20315

Commanding General
U. S. Army Materiel Command
ATTN: AMCRD-TP 1
Washington, D. C. 20315

Commanding General
U. S. Army Aviation Systems

Command 1
12th £ Spruce Streets
St. Louis, Missouri 63166

Commanding General
U. S. Army Electronics Command
ATTN: AMSEL-DL 1
Fort Monmouth, New Jersey 07703

Commanding General
U. S. Army Missile Command
ATTN: AMSMI-R
Redstone Arsenal, Alabama 35809 1

Commanding Officer
U. S. Army Mobility Equipment

Research § Development Center
ATTN: Tech Docu Ctr,Bldg 315

AMSME-RZT
Fort Belvoir, Virginia 22060

Commanding General
U. S. Army Munitions Command
ATTN: AMSMU-RE
Dover, New Jersey 07801

Commanding General
U. S. Army Weapons Command
ATTN: AMSWE-RE
Rock Island, Illinois 61202

Director
U. S. Army Advanced Materiel

Concepts Agency
Washington, D. C. 20315

Director
U. S. Army Aeronautical Research

Laboratory
Moffett Naval Air Station
California 94035

Commanding Officer
U. S. Army Harry Diamond

Laboratories
ATTN: AMXD0-TD/002
Washington,.D. C. 20438

Commanding Officer
U. S. Army Materials § Mechanics

Research Center
ATTN: AMXMR-ATL
Watertown, Massachusetts 02172

71

DISTRIBUTION LIST

No. of
Copies Organization

1 Commanding General
U. S. Army Natick Laboratories
ATTN: AMXRE, Dr. D. Sieling
Natick, Massachusetts 01762

1 Office of Vice Chief of Staff
ATTN: CSAV-W-TIS
Department of the Army
Washington, D. C 20310

3 Commander
U. S. Naval Air Systems Command
ATTN: AIR-604
Washington, D. C. 20360

3 Commander
U. S. Naval Ordnance Systems

Command
ATTN: ORD-9132
Washington, D. C. 20360

Aberdeen Proving Ground

Ch, Tech Lib
Marine Corps Ln Ofc
CDC Ln Ofc

72

Unclassified
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security clmtMiticmtion ot UHm, body ot mbatrmct and Indexing annotation muat b* mntmrmd whan Ihm ovaralt raport I* claaaltlad)

I. ORISINATINC ACTIVITY (Corporate author)

U.S. Army Aberdeen Research and Development Center
Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

2a. REPORT SECURITY CLASSIFICATION

Unclassified

3. REPORT TITLE

FUNCTION APPROXIMATION ROUTINES FOR BRLESC - A SURVEY

4. DESCRIPTIVE NOTES (Typ* ot raport mnd Inelumlva daft)

e AUTHOR(S) (Pint nun, middle Inltlml, fast name)

John D. Wortman

t REPORT DATE

August 19T0

7a. TOTAL NO. OF PACES

72
7fc. NO. OF RtFS

19
•a. CONTRACT OR SRANT NO.

».PROJECT NO. RDT&E lT06ll02All+B

•a. ORIOINATOR'S REPORT NUMBER(S)

BRL Memorandum Report No. 2053

»b. OTHER REPORT NOI1I {,Ciy other number» char may be aeel0ied
title rmport)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U.S. Army Materiel Command
Washington, D.C.

1*. ABSTRACT

This report is a survey of the function approximation routines available for the
BRLESC computer at Aberdeen Proving Ground as of April 1969- It includes a
description of each routine and some general discussion.

DD ,,2r..t473 "« REPLACES DO POPJM 147», I JAN «4. WHICH IB
MLITI FOR ARMY USB.

Unclassified
Sacurity Classification

Unclassified
Security Classification

KEY WORDS

Minimization
Interpolation
Curve Fitting
Function Approximation
Least Squares
BRLESC
FORTRAN Routines
FORAST Routines

Unclassified
Security Classification

